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Abstract

Motivated by real-time advertising exchanges, we analyze the problem of pricing
inventory in a repeated posted-price auction. We consider both the cases of a truth-
ful and surplus-maximizing buyer, where the former makes decisions myopically
on every round, and the latter may strategically react to our algorithm, forgoing
short-term surplus in order to trick the algorithm into setting better prices in the
future. We further assume a buyer’s valuation of a good is a function of a context
vector that describes the good being sold. We give the first algorithm attaining
sublinear (Õ(T 2/3)) regret in the contextual setting against a surplus-maximizing
buyer. We also extend this result to repeated second-price auctions with multiple
buyers.

1 Introduction

A growing fraction of Internet advertising is sold through automated real-time ad exchanges. In
a real-time ad exchange, after a visitor arrives on a webpage, information about that visitor and
webpage, called the context, is sent to several advertisers. The advertisers then compete in an auction
to win the impression, or the right to deliver an ad to that visitor. One of the great advantages of
online advertising compared to advertising in traditional media is the presence of rich contextual
information about the impression. Advertisers can be particular about whom they spend money
on, and are willing to pay a premium when the right impression comes along, a process known
as targeting. Specifically, advertisers can use context to specify which auctions they would like to
participate in, as well as how much they would like to bid. These auctions are most often second-
price auctions, wherein the winner is charged either the second highest bid or a prespecified reserve
price (whichever is larger), and no sale occurs if the reserve price isn’t cleared by one of the bids.

One side-effect of targeting, which has been studied only recently, is the tendency for such exchanges
to generate many auctions that are rather uncompetitive or thin, in which few advertisers are willing
to participate. Again, this stems from the ability of advertisers to examine information about the
impression before deciding to participate. While this selectivity is clearly beneficial for advertisers,
it comes at a cost to webpage publishers. Many auctions in real-time ad exchanges ultimately involve
just a single bidder, in which case the publisher’s revenue is entirely determined by the selection of
reserve price. Although a lone advertiser may have a high valuation for the impression, a low reserve
price will fail to extract this as revenue for the seller if the advertiser is the only participant in the
auction.

As observed by Amin et al. (2013), if a single buyer is repeatedly interacting with a seller, selecting
revenue-maximizing reserve prices (for the seller) reduces to revenue-maximization in a repeated
posted-price setting: On each round, the seller offers a good to the buyer at a price. The buyer
observes her value for the good, and then either accepts or rejects the offer. The seller’s price-
setting algorithm is known to the buyer, and the buyer behaves to maximize her (time-discounted)
cumulative surplus, i.e., the total difference between the buyer’s value and the price on rounds where
she accepts the offer. The goal of the seller is to extract nearly as much revenue from the buyer as
would have been possible if the process generating the buyer’s valuations for the goods had been
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known to the seller before the start of the game. In Amin et al. (2013) this goal is called minimizing
strategic regret.

Online learning algorithms are typically designed to minimize regret in hindsight, which is defined
as the difference between the loss of the best action and the loss of the algorithm given the observed
sequence of events. Furthermore, it is assumed that the observed sequence of events are generated
adversarially. However, in our setting, the buyer behaves self-interestedly, which is not necessarily
the same as behaving adversarially, because the interaction between the buyer and seller is not
zero-sum. A seller algorithm designed to minimize regret against an adversary can perform very
suboptimally. Consider an example from Amin et al. (2013): a buyer who has a large valuation v
for every good. If the seller announces an algorithm that minimizes (standard) regret, then the buyer
should respond by only accepting prices below some ε � v. In hindsight, posting a price of ε in
every round would appear to generate the most revenue for the seller given the observed sequence of
buyer actions, and therefore εT cumulative revenue is “no-regret”. However, the seller was tricked
by the strategic buyer; there was (v−ε)T revenue left on the table. Moreoever, this is a good strategy
for the buyer (it must have won the good for nearly nothing on Ω(T ) rounds).

The main contribution of this paper is extending the setting described above to one where the buyer’s
valuations in each round are a function of some context observed by both the buyer and seller. While
Amin et al. (2013) is motivated by our same application, they imagine an overly simplistic model
wherein the buyer’s value is generated by drawing an independent vt from an unknown distribution
D. This ignores that vt will in reality be a function of contextual information xt, information that
is available to the seller, and the entire reason auctions are thin to begin with (without xt there
would be no targeting). We give the first algorithm that attains sublinear regret in the contextual
setting, against a surplus-maximizing buyer. We also note that in the non-contextual setting, regret
is measured against the revenue that could have been made if D were known, and the single fixed
optimal price were selected. Our comparator will be more challenging as we wish to compete with
the best function (in some class) from contexts xt to prices.

The rest of the paper is organized as follows. We first introduce a linear model by which values vt are
derived from contexts xt. We then demonstrate an algorithm based on stochastic gradient descent
(SGD) which achieves sublinear regret against an truthful buyer (one that accepts price pt iff pt ≤ vt
on every round t). The analysis for the truthful buyer uses prexisting high probability bounds for
SGD when minimizing strongly convex functions (Rakhlin et al., 2012). Our main result requires
an extension of this analysis to cases in which “incorrect” gradients are occasionally observed. This
lets us study a buyer that is allowed to best-respond to our algorithm, possibly rejecting offers that
the truthful buyer would not, in order to receive better offers on future rounds. We also adapt our
algorithm to non-linear settings via a kernelized version of the algorithm. Finally, we extend our
results to second-price auctions with multiple buyers.

Related Work: The pricing of digital good in repeated auctions has been considered by many other
authors, including Amin et al. (2013), Kleinberg and Leighton (2003), Blum et al. (2003), Bar-Yossef
et al. (2002), Cesa-Bianchi et al. (2013), Medina and Mohri (2014). However, most of these papers
do not consider a buyer who behaves strategically across rounds. Buyers either behave randomly
Medina and Mohri (2014), or only participate in a single round Kleinberg and Leighton (2003),
Blum et al. (2003), Bar-Yossef et al. (2002), Cesa-Bianchi et al. (2013), or participate in multiple
rounds but only desire a single good Parkes (2007), Hajiaghayi et al. (2004) and therefore, in each
of these cases, are not incentivized to manipulate the seller’s behavior on future rounds. In reality
buyers repeatedly interact with the same seller. There is empirical evidence suggesting that buyers
are not myopic, and do in fact behave strategically to induce better prices in the future Edelman and
Ostrovsky (2007), as well as literature studying different strategies for strategic buyers Cary et al.
(2007), Kitts and Leblanc (2004), Kitts et al. (2005).

2 Preliminaries

Throughout this work, we will consider a repeated auction where at every round a single seller
prices an item to sell to a single buyer (extensions to multiple buyers are discussed in Section 5).
The good sold at step t in the repeated auction is represented by a context (feature) vector xt ∈ X =
{x : ‖x‖2 ≤ 1} and is drawn according a fixed distribution D, which is unknown to the seller. The
good has a value vt that is a linear function of a parameter vector w∗, also unknown to the seller,
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vt = w∗>xt (extensions to non-linear functions of the context are considered in Section 5). We
assume that w∗ ∈ W = {w : ‖w‖2 ≤ 1} and also that 0 ≤ w∗>x ≤ 1 with probability one with
respect to D.

For rounds t = 1, . . . , T the repeated posted-price auction is defined as follows: (1) The buyer and
seller both observe xt ∼ D. (2) The seller offers a price pt. (3) The buyer selects at ∈ {0, 1}. (4)
The seller receives revenue atpt.

Here, at is an indicator variable that represents whether or not the buyer accepted the offered price
(1 indicates yes). The goal of the seller is to select a price pt in each round t such that the expected
regret R(T ) = E

[∑T
t=1 vt − atpt

]
is o(T ). The choice of at will depend on the buyer’s behavior.

We will analyze two types of buyers in the subsequent sections of the paper: truthful and surplus-
maximizing buyers, and will attempt to minimize regret against the truthful buyer and regret against
the surplus-maximizing buyer. Note, the regret is the difference between the maximum revenue
possible and the amount made by the algorithm that offers prices to the buyer.

3 Truthful Buyer

In this section we introduce the Learn-Exploit Algorithm for Pricing (LEAP), which we show has
regret of the form O(T 2/3

√
log(T log(T ))) against a truthful buyer. A buyer is truthful if she ac-

cepts any offered price that gives a non-negative surplus, which is defined as the difference between
the buyer’s value for the good minus the price paid: vt−pt. Therefore, for a truthful buyer we define
at = 1{pt ≤ vt}.
At this point, we note that the loss function vt − 1{pt ≤ vt}pt, which we wish to minimize over
all rounds, is not convex, differentiable or even continuous. If the price is even slightly above the
truthful buyers valuation it is rejected and the seller makes zero revenue. To circumvent this our
algorithm will attempt to learn w∗ directly by minimizing a surrogate loss function for which w∗

in the minimizer. Our analysis hinges on recent results Rakhlin et al. (2012) which give optimal
rates for gradient descent when the function being minimized is strongly convex. Our key trick is to
offer prices so that, in each round, the buyer’s behavior reveals the gradient of the surrogate loss at
our current estimate for w∗. Below we define the LEAP algorithm (Algorithm 1), which we show
addresses these difficulties in the online setting.

Algorithm 1 LEAP algorithm
• Let 0 ≤ α ≤ 1, w1 = 0 ∈ W , ε ≥ 0, λ > 0, Tα = dαT e.
• For t = 1, . . . , Tα (Learning phase)

– Offer pt ∼ U , where U is the uniform distribution on the interval [0, 1].
– Observe at.
– g̃t = 2

(
wt · xt − at

)
xt.

– wt+1 = ΠW(wt − 1
λt
g̃t).

• For t = Tα + 1, . . . , T (Exploit phase)

– Offer pt = wTα+1 · xt − ε.

The algorithm depends on input parameters α, ε and λ. The α parameter determines what fraction
of rounds are spent in the learning phase as oppose to the exploit phase. During the learning phase,
uniform random prices are offered and the model parameters are updated as a function of the feed-
back given by the buyer. During the exploit phase, the model parameters are fixed and the offered
price is computed as a linear function of these parameters minus the value of the ε parameter. The
ε parameter can be thought of as inversely proportional to our confidence in the fixed model pa-
rameters and is used to hedge against the possibility of over-estimating the value of a good. The λ
parameter is a learning-rate parameter set according to the minimum eigenvalue of the covariance
matrix, and is defined below in Assumption 1. In order to prove a regret bound, we first show that
the learning phase of the algorithm is minimizing a strongly convex surrogate loss and then show
that this implies the buyer enjoys near optimal revenue during the exploit phase of the algorithm.
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Let gt = 2(w>t xt − 1{pt ≤ vt})xt and F (w) = Ex∼D
[
(w∗>x − w>x)2

]
. Note that when the

buyer is truthful g̃t = gt. Against a truthful buyer, gt is an unbiased estimate of the gradient of F .
Proposition 1. The random variable gt satisfies E[gt | wt] = ∇F (wt). Also, ‖gt‖ ≤ 4 with
probability 1.

Proof. First note that E[gt |wt] = Ext

[
2
(
wt ·xt−Ept [1{pt ≤ vt}]

)]
= Ext

[
2
(
wt ·xt−Prpt(pt ≤

vt)
)]

. Since pt is drawn uniformly from [0, 1] and vt is guaranteed to lie in [0, 1] we have that
Pr(pt ≤ vt) =

∫ 1

0
1{pt ≤ vt}dpt = vt. Plugging this back into gt gives us exactly the expression

for∇F (wt). Furthermore, ‖gt‖ = 2|w>t xt − 1{pt ≤ vt}| ‖xt‖ ≤ 4 since |w>t xt| ≤ ‖wt‖‖xt‖ ≤
1 and ‖xt‖ ≤ 1

We now introduce the notion of strong convexity. A twice-differentiable function H(w) is λ-
strongly convex if and only if the Hessian matrix∇2H(w) is full rank and the minimum eigenvalue
of ∇2H(w) is at least λ. Note that the function F is strongly convex if and only if the covariance
matrix of the data is full-rank, since∇2F (w) = 2Ex[xx>]. We make the following assumption.
Assumption 1. The minimum eigenvalue of 2Ex[xx>] is at least λ > 0.

Note that if this is not the case then there is redundancy in the features and the data can be pro-
jected (for example using PCA) into a lower dimensional feature space with a full-rank covariance
matrix and without any loss in information. The seller can compute an offline estimate of both this
projection and λ by collecting a dataset of context vectors before starting to offer prices to the buyer.

Thus, in view of Proposition 1 and the strong convexity assumption, we see the learning phase of
the LEAP algorithm is conducting a stochastic gradient descent to minimize the λ-strongly convex
function F , where at each time step we update wt+1 = ΠW(wt− 1

λt g̃t) and g̃t = gt is an unbiased
estimate of the gradient. We now make use of an existing bound (Rakhlin et al. (2011, 2012)) for
stochastic gradient descent on strongly convex functions.
Lemma 1 ((Rakhlin et al., 2011) Proposition 1). Let δ ∈ (0, 1/e), Tα ≥ 4 and suppose F is λ-
strongly convex over the convex setW . Also suppose E[gt | wt] = ∇F (w) and ‖gt‖2 ≤ G2 with
probability 1. Then with probability at least 1− δ for any t ≤ Tα it holds that

‖wt −w∗‖2 ≤ (624 log(log(Tα)/δ) + 1)G2

λ2t
where w∗ = argminwF (w) .

This guarantees that, with high probability, the distance between the learned parameter vector wt

and the target weight vector w∗ is bounded and decreasing as t increases. This allows us to carefully
tune the ε parameter that is used in the exploit phase of the algorithm (see Lemma 6 in the appendix).
We are now equipped to prove a bound on the regret of the LEAP algorithm.
Theorem 1. For any T > 4, 0 < α < 1 and assuming a truthful buyer, the LEAP algorithm

with ε =
√

(624 log(
√
Tα log(Tα))+1)G2

λ2Tα
, where G = 4, has regret against a truthful buyer at most

R(T ) ≤ 2αT + 4
√

T
α

√
(624 log(

√
Tα log(Tα))+1)G2

λ2 , which implies for α = T−1/3 a regret at most

R(T ) ≤ 2T 2/3 + 4T 2/3

√
(624 log(T 1/3 log(T 2/3)) + 1)G2

λ2
= O

(
T 2/3

√
log(T log(T ))

)
.

Proof. We first decompose the regret

E
[ T∑
t=1

vt− atpt
]

= E
[ Tα∑
t=1

vt− atpt
]

+ E
[ T∑
t=Tα+1

vt− atpt
]
≤ Tα +

T∑
t=Tα+1

E
[
vt− atpt

]
, (1)

where we have used the fact |vt−atpt| ≤ 1. LetA denote the event that, for all t ∈ {Tα+1, . . . , T},
at = 1∧vt−pt ≤ ε. Lemma 6 (see Appendix, Section A.1) proves thatA occurs with probability at
least 1−T−1/2α . For brevity letN =

√
(624 log(

√
Tα log(Tα)) + 1)G2/λ2, then we can decompose

the expectation in the following way:

E
[
vt − atpt

]
= Pr[A]E[vt − atpt|A] + (1− Pr[A])E[vt − atpt|¬A]

≤ Pr[A]ε+ (1− Pr[A]) ≤ ε+ T−1/2α =

√
N

Tα
+

√
1

Tα
≤ 2

√
N

Tα
,
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where the inequalities follow from the definition of A, Lemma 6, and the fact that |vt − atpt| < 1.
Plugging this back into equation (1) gives Tα +

∑T
t=Tα+1 E[vt − atpt] ≤ Tα + d(1−α)Te√

Tα
2
√
N ≤

2αT + 4
√

T
α

√
N , proving the first result of the theorem. α = T−1/3 gives the final expression.

In the next section we consider the more challenging setting of a surplus-maximizing buyer, who
may accept/reject prices in a manner meant to lower the prices offered.

4 Surplus-Maximizing Buyer

In the previous section we considered a truthful buyer who myopically accepts every price below
her value, i.e., she sets at = 1{pt ≤ vt} for every round t. Let S(T ) = E

[∑T
t=1 γtat(vt − pt)

]
be the buyer’s cumulative discounted surplus, where {γt} is a decreasing discount sequence, with
γt ∈ (0, 1). When prices are offered by the LEAP algorithm, the buyer’s decisions about which
prices to accept during the learning phase have an influence on the prices that she is offered in the
exploit phase, and so a surplus-maximizing buyer may be able to increase her cumulative discounted
surplus by occasionally behaving untruthfully. In this section we assume that the buyer knows the
pricing algorithm and seeks to maximize S(T ).

Assumption 2. The buyer is surplus-maximizing, i.e., she behaves so as to maximize S(T ), given
the seller’s pricing algorithm.

We say that a lie occurs in any round t where at 6= 1{pt ≤ vt}. Note that a surplus-maximizing
buyer has no reason to lie during the exploit phase, since the buyer’s behavior during exploit rounds
has no effect on the prices offered. Let L = {t : 1 ≤ t ≤ Tα ∧ at 6= 1{pt ≤ vt}} be the set of
learning rounds where the buyer lies, and let L = |L| be the number of lies. Observe that g̃t 6= gt
in any lie round (recall that E[gt | wt] = ∇F (wt), i.e., gt is the stochastic gradient in round t).

We take a moment to note the necessity of the discount factor γt. This essentially models the buyer
as valuing surplus at the current time step more than in the future. Another way of interpreting this,
is that the seller is more “patient” as compared to the buyer. In Amin et al. (2013) the authors show a
lower bound on the regret against a surplus-maximizing buyer in the contextless setting of the form
O(Tγ), where Tγ =

∑T
i=1 γt. Thus, if no decreasing discount factor is used, i.e. γt = 1, then

sublinear regret is not possible. Note, the lower bound of the contextless setting applies here as well,
since the case of a distribution D that induces a fixed context x∗ on every round is a special case
of our setting. In that case the problem reduces to the fixed unknown value setting since on every
round vt = w∗>x∗.

In the rest of this section we prove an O
(
T 2/3

√
log(T )/ log(1/γ)

)
bound on the seller’s regret

under the assumption that the buyer is surplus-maximizing and that her discount sequence is γt =
γt−1 for some γ ∈ (0, 1). The idea of the proof is to show that the buyer incurs a cost for telling
lies, and therefore will not tell very many, and thus the lies she does tell will not significantly affect
the seller’s estimate of w∗.

Bounding the cost of lies: Observe that in any learning round where the surplus-maximizing buyer
tells a lie, she loses surplus in that round relative to the truthful buyer, either by accepting a price
higher than her value (when at = 1 and vt < pt) or by rejecting a price less than her value (when
at = 0 and vt > pt). This observation can be used to show that lies result in a substantial loss of
surplus relative to the truthful buyer, provided that in most of the lie rounds there is a nontrivial gap
between the buyer’s value and the seller’s price. Because prices are chosen uniformly at random
during the learning phase, this is in fact quite likely, and with high probability the surplus lost
relative to the truthful buyer during the learning phase grows exponentially with the number of lies.
The precise quantity is stated in the Lemma below. A full proof appears in the appendix, Section A.3.

Lemma 2. Let the discount sequence be defined as γt = γt−1 for 0 < γ < 1 and assume the buyer
has told L lies. Then for δ > 0 with probability at least 1 − δ the buyer loses a surplus of at least
γ−L+3−1
8Tα log( 1

δ )

(
γTα

1−γ

)
relative to the truthful buyer during the learning phase.

Bounding the number of lies: Although we argued in the previous lemma that lies during the
learning phase cause the surplus-maximizing buyer to lose surplus relative to the truthful buyer,
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those lies may result in lower prices offered during the exploit phase, and thus the overall effect of
lying may be beneficial to the buyer. However, we show that there is a limit on how large that benefit
can be, and thus we have the following high-probability bound on the number of learning phase lies.
Lemma 3. Let the discount sequence be defined as γt = γt−1 for 0 < γ < 1. Then for δ > 0 with
probability at least 1− δ, the number of lies L ≤ log(32Tα

1
δ log( 2

δ )+1)

log(1/γ) .

The full proof is found in the appendix (Section A.4), and we provide a proof sketch here. The
argument proceeds by comparing the amount of surplus lost (compared to the truthful buyer) due to
telling lies in the learning phase to the amount of surplus that could hope to be gained (compared to
the truthful buyer) in the exploit phase. Due to the discount factor, the surplus lost will eventually
outweigh the surplus gained as the number of lies increases, implying a limit to the number of lies a
surplus maximizing buyer can tell.

Bounding the effect of lies: In Section 3 we argued that if the buyer is truthful then, in each
learning round t of the LEAP algorithm, g̃t is a stochastic gradient with expected value ∇F (wt).
We then use the analysis of stochastic gradient descent in Rakhlin et al. (2011) to prove that wTα+1

converges to w∗ (Lemma 1). However, if the buyer can lie then g̃t is not necessarily the gradient
and Lemma 1 no longer applies. Below we extend the analysis in Rakhlin et al. (2011) to a setting
where the gradient may be corrupted by lies up to L times.
Lemma 4. Let δ ∈ (0, 1/e), Tα ≥ 2. If the buyer tells L lies then with probability at least 1 − δ,

‖wTα+1 −w∗‖2 ≤ 1
Tα+1

(
(624 log(log(Tα)/δ)+e

2)G2

λ2 + 4e2L
λ

)
.

The proof of the lemma is similar to that of Lemma 1, but with extra steps needed to bound the
additional error introduced due to the erroneous gradients. Due to space constraints, we present
the proof in the appendix, Section A.6. Note that, modulo constants, the bound only differs by the
additive term L/Tα. That is, there is an extra additive error term that depends on the ratio of lies to
number of learning rounds. Thus, if no lies are told, then there is no additive error. While if many
lies are told, e.g. L = Tα, then the bound become vacuous.

Main result: We are now ready to prove an upper bound on the regret of the LEAP algorithm when
the buyer is surplus-maximizing.
Theorem 2. For any 0 < α < 1 (such that Tα ≥ 4), 0 < γ < 1 and assuming a surplus-maximizing
buyer with exponential discounting factor γt = γt−1, then the LEAP algorithm using parame-

ter ε =
√

1
Tα

( (624 log(2
√
Tα log(Tα))+e2)G2

λ2 + 4e2 log(128
√
Tα log(4

√
Tα)+1)

λ log(1/γ)

)
, where G = 4, has regret

against a surplus-maximizing buyer at most

R(T ) ≤ 2αT + 4

√
T

α

√
(624 log(2

√
Tα log(Tα)) + e2)G2

λ2
+

4e2 log(128
√
Tα log(4

√
Tα) + 1)

λ log(1/γ)
,

which for α = T−1/3 implies R(T ) ≤ O
(
T 2/3

√
log(T )
log(1/γ)

)
.

Proof. Taking the high probability statements of Lemma 3 and Lemma 4 with δ/2 ∈ [0, 1/e]

tells us that with probability at least 1 − δ, ‖wTα −w∗‖2 ≤ 1
Tα

(
(624 log(2 log(Tα)/δ)+e

2)G2

λ2 +

4e2 log(64Tα
1
δ log( 4

δ )+1)

λ log(1/γ)

)
.

Since we assume Tα ≥ 4, if we set δ = T
−1/2
α it implies δ/2 = T

−1/2
α /2 ≤ 1/e, which is required

for Lemma 4 to hold. Thus, if we set the algorithm parameter ε as indicated in the statement of
theorem, we have that with probability at least 1 − T−1/2α for all t ∈ {Tα + 1, . . . , T} that at = 1
and vt − pt ≤ ε, which follows from the same argument used for Lemma 6.

Finally, the same steps as in the proof of Theorem 1 we can be used to show the first inequality.
Setting α = T−1/3 shows the second inequality and completes the theorem.

Note that the bound shows that if γ → 1 (i.e. no discounting) the bound becomes vacuous, which
is to be expected since the Ω(Tγ) lower bound on regret demonstrates the necessity of a discounting
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factor. If γ → 0 (i.e. buyer become myopic, thereby truthful), then we retrieve the truthful bound
modulo constants. Thus for any γ < 1, we have shown the first sublinear bound on the seller’s regret
against a surplus-maximizing buyer in the contextual setting.

5 Extensions

Doubling trick: A drawback of Theorem 2 is that optimally tuning the parameters ε and α re-
quires knowledge of the horizon T . The usual way of handling this problem in the standard online
learning setting is to apply the ‘doubling trick’: If a learning algorithm that requires knowledge
of T has regret O(T c) for some constant c, then running independent instances of the algorithm
during consecutive phases of exponentially increasing length (i.e., the ith phase has length 2i) will
also have regret O(T c). We can also apply the doubling trick to our strategic setting, but we must
exercise caution and argue that running the algorithm in phases does not affect the behavior of a
surplus-maximizing buyer in a way that invalidates the proof of Theorem 2. We formally state and
prove the relevant corollary in Section A.8 of the Appendix.

Kernelized Algorithm: In some cases, assuming that the value of a buyer is a linear function of the
context may not be accurate. In this section we briefly introduce a kernelized version of LEAP, which
allows for a non-linear model of the buyer value as a function of the context x. At the same time,
the regret guarantees provided in the previous sections still apply since we can view the model as
linear function of the induced features φ(x), where φ(·) is a non-linear map and the kernel function
K is used to compute the inner product in this induced feature space: K(x, x′) = φ(x)>φ(x′).
For a more complete discussion of kernel methods see, for example, Mohri et al. (2012), Schölkopf
and Smola (2002). For what follows, we define the projection operation ΠK

(
β, (x1, . . . ,xt)

)
=

β/
√∑t

i,j=1 βiβjK(xi,xj). The proof of Proposition 2 is moved to the appendix (Section A.7) in
interest of space.

Algorithm 2 Kernelized LEAP algorithm
• Let K(·, ·) be a PDS function s.t. ∀x : |K(x,x)| ≤ 1, 0 ≤ α ≤ 1, Tα = dαT e, β = 0 ∈ RTα ,
ε ≥ 0, λ > 0.

• For t = 1, . . . , Tα

– Offer pt ∼ U
– Observe at
– βt = − 2

λt

(∑t−1
i=1 βiK(xi,xt)− at

)
– β = ΠK

(
β, (x1, . . . ,xt)

)
• For t = Tα + 1, . . . , T

– Offer pt =
∑Tα
i=1 βiK(xi,xt)− ε

Proposition 2. Algorithm 2 is a kernelized implementation of the LEAP algorithm with W =
{w : ‖w‖2 ≤ 1} and w1 = 0. Furthermore, if we consider the feature space induced by the
kernel K via an explicit mapping φ(·), the learned linear hypothesis is represented as wt =∑t−1
i=1 βiφ(xi) which satisfies ‖wt‖ =

∑t−1
i,j=1 βiβjK(xi,xj) ≤ 1. The gradient is gt =

2
(∑t−1

i=1 βiφ(xi)
>φ(xt)− at

)
φ(xt), and ‖gt‖ ≤ 4.

Multiple Buyers: So far we have assumed that the seller is interacting with a single buyer across
multiple posted price auctions. Recall that the motivation for considering this setting was repeated
second price auctions against a single buyer, a situation that happens often in online advertising
because of targetting. One might nevertheless wonder whether the algorithm can be applied to a
setting where there can be multiple buyers, and whether it remains robust in such a setting. We
describe a way in which the analysis for the posted-price setting can carry over to multiple buyers. .

Formally, suppose there are K buyers, and on round t, buyer k receives a valuation of vk,t. We let
kval(t) = arg maxk vk,t, v+t = vkval(t),t, and v−t = maxk 6=kval(t) vk,t: the buyer with the highest
valuation, the highest valuation itself, and the second-highest valuation respectively. In a second
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price auction, each buyer also submits a bid bk,t, and we define kbid(t), b+t and b−t analogously
to kval(t), v+t , v

−
t , corresponding to the highest bidder, the largest bid, and the second-largest bid.

After the seller announces a reserve price pt, buyers submit their bids {bk,t}, and the seller receives
round t revenue of rt = 1{pt ≤ b+t }max{b−t , pt}. The goal of the seller is to minimize R(T ) =

E[
∑T
t=1 v

+
t − rt]. We assume that buyers are surplus-maximizing, and select a strategy that maps

previous reserve prices p1, ..., pt−1, pt, and vk,t to a choice of bid on round t.

We call v+t the market valuation for good t. The key to extending the LEAP algorithm to the multiple
buyer setting will be to treat market valuations in the same way we treated the individual buyer’s
valuation in the single-buyer setting. In order to do so, we make an analogous modelling assumption
to that of Section 2. Specifically, we assume that there is some w∗ such that v+t = w∗>t xt.

1 Note
that we assume a model on the market price itself.

At first glance, this might seem like a strange assumption since v+t is itself the result of a maxi-
mization over vk,t. However, we argue that it’s actually rather unrestrictive. In fact the individual
valuations vk,t can be generated arbitrarily so long as vk,t ≤ w∗>t xt and equality holds for some k.
In other words, we can imagine that nature first computes the market valuation v+t , then arbitrarily
(even adversarialy) selects which buyer gets this valuation, and the other buyer valuations.

Now we can define at = 1{pt ≤ b+t }, whether the largest bid was greater than the reserve, and
consider running the LEAP algorithm, but with this choice of at. Notice that for any t, atpt ≤ rt,
thereby giving us the following key fact: R(T ) ≤ R′(T ) , E[

∑T
t=1 v

+
t − atpt]. We also redefine

L to be the number of market lies: rounds t ≤ Tα where at 6= 1{pt ≤ v+t }. Note the market tells
a lie if either all valuations were below pt, but somebody bid over pt anyway, or if some valuation
was above pt but no buyer decided to outbid pt. With this choice of L, Lemma 4 holds exactly as
written but in the multiple buyer setting.

It’s well-known Varian and Repcheck (2010) that single-shot second price auctions are strategy-
proof. Therefore, during the exploit phase of the algorithm, all buyers are incentivized to bid truth-
fully. Thus, in order to bound R′(T ) and therefore R(T ), we need only rederive Lemma 3 to bound
the number of market lies. We begin partitioning the market lies. Let L = {t : t ≤ Tα,1{pt ≤
v+t } 6= 1{pt ≤ b+t }}, while letting Lk = {t : t ≤ Tα, v

+
t < p+t ≤ b+t , k

bid(t) = k} ∪ {t ≤
Tα, b

+
t < pt ≤ v+t , k

val(t) = k}. In other words, we attribute a lie to buyer k if (1) the reserve
was larger than the market value, but buyer k won the auction anyway, or (2) buyer k had the largest
valuation, but nobody cleared the reserve. Checking that L = ∪kLk and letting Lk = |Lk| tells us
that L ≤

∑K
k=1 Lk. Furthermore, we can bound Lk using nearly identical arguments to the posted

price setting, giving us the subsequent Corollary for the multiple buyer setting.

Lemma 5. Let the discount sequence be defined as γt = γt−1 for 0 < γ < 1. Then for δ > 0 with
probability at least 1− δ, Lk ≤ log(32Tα/δ+1)

log(1/γ) , and L ≤ KLk.

Proof. We first consider the surplus buyer k loses during learning rounds, compared to if he had
been truthful. Suppose buyer k unilateraly switches to always bidding his value (i.e. bk,t = vk,t).
For a single-shot second price auction, being truthful is a dominant strategy and so he would only
increase his surplus on learning rounds. Furthermore, on each round in Lk he would increase his
(undiscounted) surplus by at least |vk,t − pt|. Now the analysis follows as in Lemmas 2 and 3.

Corollary 1. In the multiple surplus-maximizing buyers setting the LEAP algorithm with

α = T−1/3, ε =
√

1
Tα

( (624 log(2
√
Tα log(Tα))+e2)G2

λ2 + 4e2K log(128
√
Tα log(4

√
Tα)+1)

λ log(1/γ)

)
, has regret

R(T ) ≤ R′(T ) ≤ O
(
T 2/3

√
K log(T )
log(1/γ)

)
6 Conclusion

In this work, we have introduced the scenario of contextual auctions in the presence of surplus-
maximizing buyers and have presented an algorithm that is able to achieve sublinear regret in this
setting, assuming buyers receive a discounted surplus. Once again, we stress the importance of the

1Note that we could also apply the kernelized LEAP algorithm (Algorithm 2) in the multiple buyer setting.
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contextual setting, as it contributes to the rise of targeted bids that result in auction with single high-
bidders, essentially reducing the auction to the posted-price scenario studied in this paper. Future
directions for extending this work include considering different surplus discount rates as well as
understanding whether small modifications to standard contextual online learning algorithms can
lead to no-strategic-regret guarantees.
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A Appendix

A.1 Selecting the ε parameter

Lemma 6. Assume Tα ≥ 4. Then using the LEAP algorithm, in the presence of a truthful buyer,
ensures that with probability at least 1 − T−1/2α for all t ∈ {Tα + 1, . . . , T} we have at = 1 and

vt − pt ≤ ε =
√

(624 log(
√
Tα log(Tα))+1)G2

λ2Tα
.

Proof. Using Lemma 1, we have with probability at least 1− T−1/2α for x ∈ X

|w∗·x−wTα ·x| = |(w∗−wTα)·x| ≤ ‖w∗−wTα‖‖x‖ ≤ ‖w∗−wTα‖ ≤

√
(624 log(

√
Tα log(Tα)) + 1)G2

λ2Tα
.

Therefore with probability 1− T−1/2α for all t ∈ {Tα + 1, . . . , T}
w∗ · xt −wTα · xt + ε ≥ 0 ⇐⇒ at = 1 and w∗ · xt −wTα · xt − ε ≤ 0 ⇐⇒ vt − pt ≤ ε,
which completes the lemma.

A.2 Chernoff-style bound.

Lemma 7. Let S =
∑n
i=1 xi, where each xi ∈ {0, 1} is an independent random variable. Then the

following inequality holds for any 0 < ε < 1.

Pr(S > (1 + ε)E[S]) ≤ eεE[S]

(1 + ε)(1+ε)E[S]
≤ exp

(−ε2E[S]

4

)
.

Proof. In what follows denote Pr(xi = 1) = pi. To show the first inequality, we follow standard
steps for arriving at a multiplicative Chernoff bound. For any t > 0 and using Markov’s inequality,
we have

Pr(S > (1 + ε)E[S]) = Pr(exp(tS) > exp(t(1 + ε)E[S])) ≤ E[exp(tS)]

exp(t(1 + ε)E[S])
. (2)

Now, noting that the random variables are independent, the numerator of this expression can be
bounded as follows

E[exp(tS)] = E
[ n∏
i=1

exp(txi)
]

=

n∏
i=1

E[exp(txi)] =

n∏
i=1

pie
t + (1− pi) =

n∏
i=1

pi(e
t − 1) + 1

≤
n∏
i=1

exp(pi(e
t − 1)) = exp

(
(et − 1)

n∑
i=1

pi

)
= exp((et − 1)E[S]) ,

where the inequality uses the fact 1 +x ≤ ex. Plugging this back into (2) and setting t = log(1 + ε)
results in

Pr(S > (1 + ε)E[S]) ≤ exp((et − 1)E[S])

exp(t(1 + ε)E[S])
=

exp((1 + ε− 1)E[S])

(1 + ε)(1+ε)E[S]
=

eεE[S]

(1 + ε)(1+ε)E[S]
,

which proves the first inequality. To prove the second inequality, it suffices to show that

(1 + ε)−(1+ε)E[S] = exp(− log(1 + ε)(1 + ε)E[S]) ≤ exp
(
− εE[S]− ε2E[S]

4

)
⇐⇒ log(1 + ε)(1 + ε) ≥ ε+

ε2

4
. (3)

To prove this, note that for f(ε) = log(1 + ε)(1 + ε)− ε− ε2/4, we have

f(0) = 0

∀ε ∈ [0, 1], f ′(ε) = log(1 + ε)− ε/2 ≥ ε− ε2/2− ε/2 > 0 .

Thus, the function f is zero at zero and increasing between values zero and one, implying it is
positive between values zero and one and which proves the inequality in (3) and completes the
lemma.
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A.3 Proof of Lemma 2

Before we present the proof of Lemma 2 we define a couple variables and also present an interme-
diate lemma. Define the variable

Mρ =

Tα∑
t=1

1{|vt − pt| < ρ}, (4)

as the number of times that the gap between the price offered and the buyer’s value is less than ρ.
For δ > 0, let

Eδ,ρ =
{
Mρ ≤ 2ρTα +

√
8ρTα log

1

δ

}
, (5)

denote the event that there are not too many rounds on which this gap is smaller than ρ. We first
prove the following lemma:

Lemma 8. For any δ > 0 and 0 < ρ < 1 we have P (Eδ,ρ) ≥ 1− δ.

Proof. First notice that on lie rounds, the (undiscounted) surplus lost compared to the truthful buyer
is

1{pt ≤ vt}(vt − pt)︸ ︷︷ ︸
truthful surplus

−1{pt > vt}(vt − pt)︸ ︷︷ ︸
untruthful surplus

= |vt − pt| .

Since each value vt ∈ [0, 1] and price pt ∈ [0, 1] is chosen i.i.d. during the first Tα rounds of the
algorithm and furthermore pt is chosen uniformly at random, we have that on any round Pr(|vt −
pt| < ρ) ≤ 2ρ. Using this, we note

E[Mρ] = E

[
Tα∑
t=1

1{|vt − pt| < ρ}

]
=

Tα∑
t=1

E[1{|vt − pt| < ρ}] =

Tα∑
t=1

Pr(|vt − pt| < ρ) ≤ 2ρTα .

Now, since Mρ is a sum of Tα independent random variables taking values in {0, 1}, Lemma 7 (in
the appendix) implies

Pr[Mρ ≥ (1 + ε)E[Mρ]] ≤ exp
(−ε2E[Mρ]

4

)
.

After setting the right hand side equal to δ and solving for ε, we have with probability at least 1− δ,

Mρ ≤ E[Mρ]

(
1 +

√
4

E[Mρ]
log

1

δ

)
= E[Mρ] +

√
4E[Mρ] log

1

δ
≤ 2ρTα +

√
8ρTα log

1

δ
,

which completes the proof of the intermediate lemma.

We can now give the proof of Lemma 2, which shows if we select

ρ∗ = 1/(8Tα log(1/δ)), (6)

and the event Eδ,ρ∗ occurs, then at least γ−L+3−1
8Tα log( 1

δ )

(
γTα

1−γ

)
surplus is lost compared to the truthful

buyer.

Proof of Lemma 2. Let M ′ =
⌈
2ρTα +

√
8ρTα log 1/δ

⌉
. Lemma 8 guarantees that with at least

probability 1 − δ, M ′ is the maximum number of rounds where |vt − pt| ≤ ρ occurs. Thus, on
at least Lρ = L −M ′ of the lie rounds, at least ρ (undiscounted) surplus is lost compared to the
truthful buyer. Let Lρ denote the set of rounds where these events occur (so that |Lρ| = Lρ), then
since the discount sequence is decreasing the disounted surplus lost is at least

∑
t∈Lρ

γt|vt − pt| ≥ ρ
∑
t∈Lρ

γt ≥ ρ
Tα∑

t=Tα−Lρ

γt .
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We can continue to lower bound this quantity:

Tα∑
t=Tα−Lρ

γt ≥
Tα−1∑
t=0

γt −
Tα−Lρ−1∑

t=0

γt =
1− γTα
1− γ

− 1− γTα−Lρ
1− γ

= (γ−Lρ − 1)
γTα

1− γ
.

We also have that:

Lρ ≥ L− d2ρTα +
√

8ρTα log(1/δ)e ≥ L− 2ρTα −
√

8ρTα log(1/δ)− 1

where the first inequality follows from the definition ofLρ, the second from the fact that dne ≤ n+1.
Therefore, defining L′ρ = L− 2ρTα −

√
8ρTα log(1/δ)− 1, gives us that for any 0 < ρ < 1/2:

Tα∑
t=Tα−Lρ

γt ≥ (γ−L
′
ρ − 1)

γTα

1− γ
.

Selecting ρ = 1/(8Tα log(1/δ)) gives us:

ρ
(
γ−L

′
ρ − 1

) γTα

1− γ
≥ (8 log(1/δ))−1

1

Tα

(
γ−L+3 − 1

) γTα

1− γ
,

which completes the lemma.

A.4 Proof of Lemma 3

Proof. Let S1 and S2 be the excess surplus that a surplus-maximizing buyer earns over the truthful
buyer during the learning and exploit phase of the LEAP algorithm, respectively. We have

S2 ≤
T∑

t=Tα+1

γt−1 = γTα
T−Tα−1∑
t=0

γt =
γTα

1− γ
(1− γT−Tα) . (7)

Indeed, this an upper bound on the total surplus any buyer can hope to achieve in the second phase.
Now observe that for any constants C > 0, δ0 > 0 and ρ∗ as defined in equation (6), we have

E[S1] = Pr[Eδ0,ρ∗ ∧ L ≥ C]E[S1 | Eδ0,ρ∗ ∧ L ≥ C] + Pr[¬Eδ0,ρ∗ ∨ L < C]E[S1 | ¬Eδ0,ρ∗ ∨ L < C]

≤ Pr[Eδ0,ρ∗ ∧ L ≥ C]E[S1 | Eδ0,ρ∗ ∧ L ≥ C]

= Pr[Eδ0,ρ∗ ] Pr[L ≥ C | Eδ0,ρ∗ ]E[S1 | Eδ0,ρ∗ ∧ L ≥ C]

≤ −(1− δ0) Pr[L ≥ C | Eδ0,ρ∗ ]
γ−C+3 − 1

8Tα log(1/δ0)

(
γTα

1− γ

)
The steps follow respectively by the law of iterated expectation; because S1 ≤ 0 with probability
1, since the truthful buyer strategy gives maximal revenue during the non-adaptive first phase; defi-
nition of conditional probability; and finally, applying Lemma 8 to lower bound Pr[Eδ0,ρ∗ ] and the
second half of the proof of Lemma 2 (shown in Section A.3) to upper bound E[S1 | Eδ0,ρ∗ ∧L ≥ C]
(which is a negative quantity).

Note, since we are assuming a surplus maximizing buyer, it must be the case that 0 ≤ E[S1 + S2].
Thus, using the upper bound on S2 and the upper bound on E[S1], we can rewrite the fact 0 ≤
E[S1 + S2] as:

Pr[L ≥ C | Eδ0,ρ∗ ](1− δ0)
γ−C+3 − 1

8Tα log(1/δ0)

(
γTα

1− γ

)
≤ γTα

1− γ
(1− γT−Tα)

⇐⇒ Pr[L ≥ C | Eδ0,ρ∗ ] ≤ 8Tα log(1/δ0)(1− γT−Tα)/((1− δ0)(γ−C+3 − 1))

Therefore, when

C =

log

(
(1−γT−Tα)8Tα log(1/δ0)

δ0(1−δ0) + 1

)
log(1/γ)

− 3 we have Pr[L ≥ C | Eδ0,ρ∗ ] ≤ δ0 .
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Fixing this choice of C, lets us conclude:

Pr[L ≥ C] = Pr[L ≥ C | Eδ0,ρ∗ ] Pr[Eδ0,ρ∗ ] + Pr[L ≥ C | ¬Eδ0,ρ∗ ] Pr[¬Eδ0,ρ∗ ]
≤ Pr[L ≥ C | Eδ0,ρ∗ ] + Pr[¬Eδ0,ρ∗ ] ≤ δ0 + δ0

Thus, setting δ0 = δ/2 tells us that Pr[L < C] ≥ 1 − δ. Finally, to complete the lemma, we upper
bound C by dropping the terms (1−γT−Tα) and−3, and using 1/(δ0(1−δ0)) = 2/(δ(1−δ/2)) ≤
4/δ.

A.5 Results from Rakhlin et al. (2011)

Let Zt = (∇F (wt)− gt)
>(wt −w∗) and

Z(T ) =
2

λ

T∑
t=2

Zt
t

T∏
t′=t+1

(
1− 2

t′

)
. (8)

Rakhlin et al. (2011) proved the following upper bound on Z(T ) in the last half of the proof of their
Proposition 1. For convenience, we isolate it into a separate lemma.

Lemma 9. Let w1, . . . ,wT be any sequence of weight vectors. If E [gt] = ∇F (wt) and ‖gt‖2 ≤
G2 then for any δ < 1/e and T ≥ 2

Z(T ) ≤
16G

√
log(log(T )/δ)

λ(T − 1)T

√√√√ T∑
t=2

(t− 1)2‖wt −w∗‖2 +
16G2 log(log(T )/δ)

λ2T
.

Importantly, for the previous lemma to hold it is not necessary for the wt’s to have been generated
by stochastic gradient descent. The same remark applies to the next lemma, which gives a recursive
upper bound on ‖wt+1 −w∗‖2, and which was also proven by Rakhlin et al. (2011) in the last half
of the proof of their Proposition 1.
Lemma 10. Let w1, . . . ,wT+1 be any sequence of weight vectors. Suppose the following three
conditions hold:

1. ‖wt −w∗‖2 ≤ a
t for t ∈ {1, 2},

2. ‖wt+1 −w∗‖2 ≤ b
(t−1)t

√∑t
i=2(i− 1)2 ‖wi −w∗‖2 + c

t for t ∈ {2, . . . , T}, and

3. a ≥ 9b2

4 + 3c.

Then ‖wT+1 −w∗‖2 ≤ a
(T+1) .

A.6 Proof of Lemma 4

Proof. Recall that F is λ-strongly convex. A well-known property of λ-strongly convex functions
is that

∇F (w′)>(w′ −w′′) ≥ F (w′)− F (w′′) +
λ

2
‖w′ −w′′‖2 (9)

for any weight vectors w′,w′′ (for example, see (Rakhlin et al., 2012)). Letting w′ = w∗ and
w′′ = w in Eq. (9) we have

0 = ∇F (w∗)>(w∗ −w) ≥ F (w∗)− F (w) +
λ

2
‖w∗ −w‖2

⇒ F (w)− F (w∗) ≥ λ

2
‖w∗ −w‖2 (10)

where we used the fact that w∗ minimizes F , and thus ∇F (w∗) = 0. Now letting w′ = w and
w′′ = w∗ in Eq. (9) and applying Eq. (10) proves

∇F (w)>(w −w∗) ≥ λ ‖w −w∗‖2 . (11)
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Note that g̃t = gt ± 1{t ∈ L}xt, where the ± depends on the value of at. Let Zt = (∇F (wt) −
gt)
>(wt −w∗). We have

‖wt+1 −w∗‖2 = ‖wt − ηtg̃t −w∗‖2

= ‖wt −w∗‖2 − 2ηtg̃
>
t (wt −w∗) + η2t ‖g̃t‖

2

= ‖wt −w∗‖2 − 2ηtg
>
t (wt −w∗)± 2ηt1{t ∈ L}x>t (wt −w∗) + η2t ‖g̃t‖

2

≤ ‖wt −w∗‖2 − 2ηtg
>
t (wt −w∗) + 4ηt1{t ∈ L}+ η2tG

2 (12)

= ‖wt −w∗‖2 − 2ηt∇F (wt)
>(wt −w∗) + 2ηtZt + 4ηt1{t ∈ L}+ η2tG

2

≤ ‖wt −w∗‖2 − 2ηtλ ‖wt −w∗‖2 + 2ηtZt + 4ηt1{t ∈ L}+ η2tG
2 (13)

= (1− 2ληt) ‖wt −w∗‖2 + 2ηtZt + 4ηt1{t ∈ L}+ η2tG
2

where in Eq. (12) we used x>t (wt −w∗) ≤ ‖xt‖ ‖wt −w∗‖ ≤ 2 and ‖g̃t‖2 ≤ G2. In Eq. (13) we
used Eq. (11). For any T ′ ∈ {2, . . . , Tα} let Yt(T ′) =

∏T ′

t′=t+1 (1− 2ληt′). Unrolling the above
recurrence till t = 2 yields

‖wT ′+1 −w∗‖2 ≤ Y1(T ′) ‖w2 −w∗‖2+2

T ′∑
t=2

ηtZtYt(T
′)+4

T ′∑
t=2

ηt1{t ∈ L}Yt(T ′)+G2
T ′∑
t=2

η2t Yt(T
′).

Now substitute ηt = 1
λt , and note that since (1 − 2λη2) = 0 and T ′ ≥ 2 we have Y1(T ′) = 0,

so the first term is zero. Also the second term is equal to Z(T ′) by the definition in Eq. (8) in
Appendix A.5. Simplifying leads to

‖wT ′+1 −w∗‖2 ≤ Z(T ′) +
4

λ

T ′∑
t=2

1{t ∈ L}Yt(T
′)

t
+
G2

λ2

T ′∑
t=2

Yt(T
′)

t2
. (14)

Now observe that for t ≥ 2

log Yt(T
′) =

T ′∑
t′=t+1

log

(
1− 2

t′

)
≤ −2

T ′∑
t′=t+1

1

t′
= −2

 T ′∑
t′=1

1

t′
−

t∑
t′=1

1

t′

 ≤ −2(log T ′−log t−1),

where the last inequality uses a lower bound on the t-th harmonic number and upper bound on the
T ′-th harmonic number. Thus, Yt(T ′) ≤ e2t2

T ′2 and plugging back into Eq. (14) yields

‖wT ′+1 −w∗‖2 ≤ Z(T ′) +
4e2

λT ′2

T ′∑
t=2

1{t ∈ L}t+
e2G2

λ2T ′
≤ Z(T ′) +

4e2L

λT ′
+
e2G2

λ2T ′
.

where the second inequality follows from
∑T ′

t=2 1{t ∈ L}t ≤ LT ′. Now, to bound the term Z(T ′),
we apply Lemma 9 from Appendix A.5 and conclude that for δ ∈ [0, 1/e], with probability at least
1− δ, for all T ′ ∈ {2, . . . , Tα}

Z(T ′) ≤
16G

√
log(log(T ′)/δ)

λ(T ′ − 1)T ′

√√√√ T ′∑
t=2

(t− 1)2‖wt −w∗‖2 +
16G2 log(log(T ′)/δ)

λ2T ′
.

Plugging this back in and simplifying we get, with probability at least 1−δ, for all T ′ ∈ {2, . . . , Tα}

‖wT ′+1 −w∗‖2 ≤

16G
√

log(log(T ′)/δ)

λ(T ′ − 1)T ′

√√√√ T ′∑
t=2

(t− 1)2‖wt −w∗‖2+
1

T ′

( (16 log(log(T ′)/δ) + e2)G2

λ2
+

4e2L

λ

)
.

In order to apply Lemma 10 in Appendix A.5 let

a =
(624 log(log(Tα)/δ) + e2)G2

λ2
+

4e2L

λ
,

b =
16G

√
log(log(T ′)/δ)

λ
, and

c =
(16 log(log(T ′)/δ) + e2)G2

λ2
+

4e2L

λ
.
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It is a straightforward calculation to show that a ≥ 9b2

4 + 3c. Also for any T ′

G ‖wT ′ −w∗‖ ≥ ‖∇F (wT ′)‖ ‖wT ′ −w∗‖ ≥ ∇F (wT ′)
>(wT ′ −w∗) ≥ λ ‖wT ′ −w∗‖2

where the last inequality follows from Eq. (11). Dividing both sides by λ ‖wT ′ −w∗‖ proves
‖wT ′ −w∗‖ ≤ G

λ for all T ′, which implies ‖wT ′ −w∗‖2 ≤ a/T ′ for T ′ ∈ {1, 2}. Now we can
apply Lemma 10 in Appendix A.5 to show

‖wTα+1 −w∗‖2 ≤ 1

Tα + 1

( (624 log(log(Tα)/δ) + e2)G2

λ2
+

4e2L

λ

)
,

which completes the proof.

A.7 Proof of Proposition 2

Proof. We will use an inductive argument. Note that, before the projection step β1 = 2a1/λ and
after projection β1 = a1/

√
K(x1,x1). Thus, w1 = 0 and w2 = β1φ(x1) = a1√

K(x1,x1)
φ(x1)

match the hypotheses returned by the LEAP algorithm when operating in the feature space induced
by φ(·) and using the projection ΠW for W = {w : ‖w‖2 ≤ 1}. Now, assuming the inductive
hypothesis, we have wt =

∑t−1
i=1 βiφ(xi) and we have, before projection,

t∑
i=1

βiφ(xi) = wt + βt = wt −
2

λt

( t−1∑
i=1

βiK(xi,xt)− at
)
φ(xt) = wt −

2

λt
(w>t φ(xt)− at)φ(xt)

and, after projection,∑t
i=1 βiφ(xi)√∑t

i,j=1 βiβjK(xi,xj)
=

∑t
i=1 βiφ(xi)

‖
∑t
i=1 βiφ(xi)‖

=
wt − 2

λt (w
>
t φ(xt)− at)φ(xt)

‖wt − 2
λt (w

>
t φ(xt)− at)φ(xt)‖

= ΠW

(
wt −

2

λt
(w>t φ(xt)− at)φ(xt)

)
= wt+1

which proves the equivalence of the first phase of the two algorithms in the feature space induced
by φ(·). Note, in the second phase neither β or wTα+1 is updated, and from the preceding argument
we have

pt =

Tα∑
i=1

βiK(xi,xt)− ε =
( Tα∑
i=1

βiφ(xi)
)
φ(xt)− ε = w>Tα+1φ(xt)− ε ,

which shows the equivalence of the two algorithms in the second phase as well.

The bound ‖wt‖ ≤ 1 follows directly from the definition of the projection ΠK . Using wt =∑t−1
i=1 βiφ(xi), we have that the gradient is

gt = 2(w>t φ(xt)− at)φ(xt) = 2
( t∑
i=1

βiφ(xi)
>φ(xt)− at

)
φ(xt) .

Finally, we can bound ‖gt‖ ≤ 2(|w>t φ(xt)| + 1)‖φ(xt)‖ ≤ 2(‖wt‖‖φ(xt)‖ + 1) ≤ 4, which
follows from ‖wt‖ ≤ 1 and ‖φ(xt)‖ =

√
K(xt,xt) ≤ 1.

A.8 Doubling trick

Corollary 2. Partition all T rounds into dlog2 T e consecutive phases, where each phase i has length
Ti = 2i. Run an independent instance of the LEAP algorithm in each phase, tuning ε and α as in
Theorem 2, using horizon length Ti. Against a surplus-maximizing buyer, the seller’s regret against

a surplus-maximizing buyer is R(T ) ≤ O
(
T 2/3

√
log(T )
log(1/γ)

)
.

Proof. Since an independent instance of the algorithm is run in each phase, the buyer will behave so
as to maximize surplus in each phase independently, without regard to what occurs in other phases.
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Moreover, the discount factor for the sth round in any phase i is γti+s = γtiγs, where ti is the first
round of phase i. It is easy to see that the behavior of a surplus-maximizing buyer is unchanged if
we scale her surplus in every round by a constant. Therefore the analysis of Theorem 2 is directly
applicable to every phase, and we can combine the analysis for all phases using the doubling trick,
as follows.

Let Ri be the seller’s strategic regret in phase i and n = dlog2 T e. By Theorem 2 there exists a
constant C depending only on λ such that

R(T ) =

dlog2 Te∑
i=1

Ri ≤
C√

log(1/γ)

dlog2 Te∑
i=1

T
2/3
i

√
log2 Ti =

C√
log(1/γ)

dlog2 Te∑
i=1

(
22/3

)i√
i (15)

Let Sr,n =
∑n
i=1 r

i
√
i. Observe that

Sr,n+1 =

n+1∑
i=1

ri
√
i = rn+1

√
n+ 1 +

n∑
i=1

ri
√
i = rn+1

√
n+ 1 + Sr,n

and

Sr,n+1 = r

n+1∑
i=1

ri−1
√
i ≥ r

n+1∑
i=1

ri−1
√
i− 1 = r

n+1∑
i=2

ri−1
√
i− 1 = r

n∑
i=1

ri
√
i = rSr,n

Combining the previous two inequalities proves rn+1
√
n+ 1 + Sr,n ≥ rSr,n, which can be rear-

ranged to show
n∑
i=1

ri
√
i ≤ rn+1

√
n+ 1

r − 1
.

Applying the above inequality for n = dlog2 T e and r = 22/3 proves

dlog2 Te∑
i=1

(
22/3

)i√
i ≤

(22/3)dlog2 Te+1
√
dlog2 T e+ 1

22/3 − 1

≤
(22/3)log2 T+2

√
log2 T + 2

22/3 − 1

=
24/3

22/3 − 1
T 2/3

√
log2 T + 2.

Combining the above with Eq (15) proves the corollary.
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