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Abstract

Differentially private learning algorithms protect
individual participants in the training dataset by
guaranteeing that their presence does not signif-
icantly change the resulting model. In order to
make this promise, such algorithms need to know
the maximum contribution that can be made by
a single user: the more data an individual can
contribute, the more noise will need to be added
to protect them. While most existing analyses
assume that the maximum contribution is known
and fixed in advance—indeed, it is often assumed
that each user contributes only a single example—
we argue that in practice there is a meaningful
choice to be made. On the one hand, if we allow
users to contribute large amounts of data, we may
end up adding excessive noise to protect a few out-
liers, even when the majority contribute only mod-
estly. On the other hand, limiting users to small
contributions keeps noise levels low at the cost
of potentially discarding significant amounts of
excess data, thus introducing bias. Here, we char-
acterize this trade-off for an empirical risk mini-
mization setting, showing that in general there is a
“sweet spot” that depends on measurable proper-
ties of the dataset, but that there is also a concrete
cost to privacy that cannot be avoided simply by
collecting more data.

1. Introduction

Differential privacy (Dwork & Roth, 2014) has emerged
as the standard framework for quantifying information re-
vealed by an algorithm about the users that supply its un-
derlying data. A differentially private algorithm guarantees
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that the presence of any single user in the dataset cannot
be accurately predicted from the algorithm’s output; this
is achieved by perturbing the result using random noise.
Differential privacy is built around a rigorous theory and
has strong formal properties; for example, the protection it
affords cannot be broken by any kind of post-processing.

While a variety of mechanisms for generating differentially
private algorithms are now known—and, increasingly, used
in practice—significant challenges remain. In applying
differential privacy to location data, Pyrgelis et al. (2018)
lamented that “differentially private mechanisms . ..yield
a significant loss in utility.” Describing their use of differ-
ential privacy at the U.S. Census Bureau, Garfinkel et al.
(2018) wrote that their chosen value for the privacy param-
eter € (for which smaller values indicate stronger privacy
protection) was “far higher than those envisioned by the
creators of differential privacy.” In order to achieve their
desired utility, they were forced to accept a less than ideal
level of protection.

While a variety of factors contribute to these kinds of prob-
lems, we focus here on a particular difficulty arising from
the need to add noise sufficient to mask the largest effect of
any individual user. In typical applications, this maximum
effect can be quite large or potentially unbounded: even
when typical users contribute only a modest amount of data,
there can be extreme outliers, and they must be protected too.
(Arguably, the protection of outliers is even more impor-
tant.) And, making things worse, we must protect not only
the users already in the dataset, but also the hypothetical
users who might have elected not to contribute—otherwise
an attacker could infer their absence.

Formally, the magnitude of the noise usually must be cali-
brated to match the sensitivity of the analysis with respect to
a single user. Most existing theoretical work assumes that
the sensitivity is fixed and known in advance; for instance,
in differentially private learning it is often assumed that
each user can contribute only a single example (Chaudhuri
et al., 2011; Bassily et al., 2014). In reality, of course, users
often contribute many examples, with different users con-
tributing at vastly different rates; a single user might thus
be responsible for a disproportionately large fraction of the
dataset.
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This phenomenon, where the amount of data contributed by
a user follows a heavy-tailed distribution, is often referred
to as a “power law” (or by other names in other contexts,
e.g., Zipf’s law in linguistics). Power laws are extremely
common in real datasets across diverse domains, whether
counting the number of movies rated by a user (Harper &
Konstan, 2015) or the number of connections a user has in a
social network (Leskovec & Krevl, 2014).

For differentially private algorithms, the dependence on sen-
sitivity can lead to huge amounts of noise in such situations.
Practitioners sometimes compensate by raising €, but this
results in reduced privacy protection. Here, we investigate a
common alternative approach: limiting the contributions of
individual users in order to reduce the sensitivity. (Indeed,
this can be required when the sensitivity would otherwise
be unbounded.)

A fundamental question is how to choose a value for the
maximum allowed contribution. If set too high, the noise
level may be so great that any utility in the result is lost.
If set too low, we will be forced to discard large amounts
of data. This not only reduces our sample size, but also
adds bias: users who contributed more than the limit are
now under-represented. As highly active users often behave
quite differently from occasional users, this is a non-trivial
concern.

In this paper we investigate this bias-variance trade-off in
detail, showing that in general there is an intermediate con-
tribution limit for which the expected error of differentially
private empirical risk minimization is optimal. That is,
a biased training set can actually be preferable when the
learning algorithm is differentially private. We identify the
relevant characteristics of the domain that control this trade-
off, showing that in some scenarios they can be measured
or approximated using prior information. '

Along the way, our analysis reveals that there is no contribu-
tion limit that suffices to eliminate both bias and variance,
even in the limit of infinite data. This suggests an explana-
tion for the difficulties encountered by practitioners, among
whom contribution limiting techniques are common. More-
over, it leaves open the question of whether there exist bet-
ter generic preprocessing methods for differentially private
learning algorithms than simple contribution bounding.

1.1. Related Work

Bias-variance trade-offs are well documented across the
machine learning and statistics literature: from structural
risk minimization and regularization (Vapnik, 1998) to ban-

"Note that we do not attempt to optimize the trade-off for
general distributions in a differentially private way; this remains
an open problem. Here we are most interested in understanding
the forces at play.

dit algorithms (Bubeck & Cesa-Bianchi, 2012), biasing the
training distribution in order to reduce variance is a com-
monly used technique. There are now general theoretical
tools like VC dimension (Vapnik, 1998) and Rademacher
complexity (Mobhri et al., 2012) that can be used to under-
stand this trade-off in learning problems.

In contrast to these general bias-variance trade-offs, the one
studied in this paper is quite specific to differential privacy:
it arises from capping user contributions to a data set in
order to reduce the sensitivity of a learning algorithm. In
this specialized scenario we know the exact form of the
noise (generally Laplacian or Gaussian) and can therefore
provide explicit bounds.

The difficulties associated with sensitivity bounding are
well-known in the differential privacy literature. Previous
work has sought to address cases where the fypical sen-
sitivity is expected to be much lower than the theoretical
sensitivity; for instance, when computing medians, one can
construct datasets where the removal of a single value can
change the result arbitrarily, but in practice, most data sets
are dense near the median, and so deleting a single datapoint
has almost no effect.

Using smooth sensitivity techniques that depend on the ac-
tual dataset (as opposed to the worst-case dataset), Nissim
et al. (2007) showed how it is possible to significantly reduce
noise in these cases. Similarly, Dwork & Lei (2009) devel-
oped techniques for measuring whether the actual dataset
has acceptable sensitivity, and rejecting the analysis if it
does not. Both of these approaches fail, however, when the
typical sensitivity is large, as is the case when computing
sums or averages. More generally, quantifying their utility
loss remains a challenge.

Other efforts to reduce the noise required to make a dataset
differentially private include biasing the loss function by
adding a regularization penalty or minimizing a noisy ver-
sion of the loss function (Chaudhuri et al., 2011). However,
this work still relies on the common assumption that every
user contributes a single record to a database. Another line
of work similar to the one introduced here is that of Smith
(2011). The authors analyzed the bias and variance of pri-
vate estimators, but for a subset of statistics that they call
generically normal.

Our work complements these results by analyzing the effects
of removing the single instance per user assumption. The
high level idea is to formally analyze the effects of limiting
the number of times a user is allowed to contribute to the
dataset, quantifying the bias and variance that this process
generates.

Similar ideas have been proposed in the context of graph
analysis, with privacy guarantees with respect to a single
node. Kasiviswanathan et al. (2013) gave a method for
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computing private statistics when the degree of the node can
be arbitrary, and their work proceeds by bounding the node
degree and analyzing the bias this introduces. However, their
results require specific assumptions on degree distributions,
whereas our results are much more general and hold for any
distribution of user contributions. On the other hand, while
the work of Blocki et al. (2013) does not require additional
assumptions, their method for finding a bounded degree
graph is not computationally efficient. Moreover, neither
of these easily extends to the empirical risk minimization
domain.

Other examples of bounding contributions to reduce noise
can be found in private training methods for neural networks.
For instance, Abadi et al. (2016) and Geyer et al. (2017)
truncate the gradient of a neural network to control the
sensitivity of the sum of gradients. Nevertheless, this work
fails to provide a detailed analysis of how to choose the
truncation level for the gradient norm, instead suggesting
using the median of observed gradients. We show that, in
fact, using the median (or any fixed quantile independent
of the privacy parameter €) as a cap can yield suboptimal
estimates of a sum.

We emphasize that our goal is to provide a formal analy-
sis of the trade-off introduced by bounding user contribu-
tions, and express these bounds in terms of observable and
computable quantities. Previous work either ignored the
question of privately computing the trade-off completely
(Abadi et al. (2016) and Geyer et al. (2017) simply use the
empirical median), required strong assumptions on the data
(Kasiviswanathan et al. (2013) need the graphs to have spe-
cific degree distributions), or relied on quantities not easily
computable (Chaudhuri et al. (2011) provide an optimal
selection of the parameter that depends on the norm of the
optimal hypothesis).

2. Preliminaries

For our purposes, a dataset S € S is a collection of contri-
butions made by individual users. For instance, a dataset
might comprise a set of training examples, each contributed
by a particular user. Each user might be able to contribute
any number of examples.

Definition 1. We say rwo datasets S, S’ € S are neighbors
and write S ~ S’ if one can be recovered from the other by
removing only the data corresponding to a single user.

Definition 2. Let H be a hypothesis space. An algorithm
A S — H is said to be e-differentially private if, for every
pair of neighboring datasets S ~ S" and every U C H,

Pr(A(S) e U) <ePr(A(S') e U).

A differentially private algorithm produces approximately
the same output distribution whether or not any single user

chooses to participate in the dataset. This provides a form of
plausible deniability: an adversary viewing the result cannot
determine with high confidence whether a user was even
present in the dataset, let alone any details of the user’s data.
Of course, a large number of users can, in aggregate, have a
large effect on the algorithm’s output; thus, differential pri-
vacy allows us to learn population-level information while
protecting the privacy of individual users.

As implied by Definition 2, any nontrivial differentially
private algorithm must be stochastic; that is, it must involve
some kind of noise. Determining the scale of this noise is
critical. If the noise level is too low, the algorithm will not
be differentially private; if it is too high, the utility of the
result will be unnecessarily degraded. Ideally, we should
use just the amount of noise needed to obscure the effect of
any single user. This idea is formalized using the concept
of sensitivity.

Definition 3. The ({,) sensitivity of a function f : S — R
is given by

Ay = sup [f(S) = f(S)]. (D

S~S’

Ay is the maximum amount that adding or removing a user
from the dataset can change the value of f.

To see how sensitivity drives noise, consider the Laplace
mechanism, a simple technique for approximating a function
f in a differentially private way (Dwork et al., 2006).

Definition 4 (Laplace mechanism). Given a target func-
tion f 1S — R and a fixed € > 0, the Laplace mechanism
Lapy (S) returns f(S)+n, where n is a random noise vari-
able with density proportional to exp(—e|n|/Ay). (That is,
1 is a Laplace variable with scale parameter Ay [e.)

The Laplace mechanism is e-differentially private. Note
that A (along with €) controls the noise level: when the
target function f is highly sensitive, more noise is required
to ensure the same level of privacy.

3. A Simple Example

Before proceeding to our main result, we illustrate the un-
derlying concepts in a simpler setting. Suppose that S is a
collection of n non-negative real numbers =1, zs, ..., T,
each contributed by a unique user. We would like to esti-
mate the sum of the numbers in our dataset in a differentially
private way while minimizing the absolute error. (This setup
has connections to federated learning, for instance, where
each x; is a vector representing a gradient and the learner is
interested in the sum of these gradients.)

Naively, we might try to do this by applying the Laplace
mechanism to the function g(S) = Y_." | ;. But there is
a problem: since a single user can contribute an arbitrarily
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large value, the sensitivity of g, and therefore the scale of
the noise, is infinite. To fix this, we will introduce a cap
T on the maximum size of a user’s contribution, instead
applying the Laplace mechanism to the function g7 (S) =
> min(z;,T). This will bias our estimated sum, of
course, but it also reduces the amount of added noise, as the
sensitivity is now

max |97 (8) = gr(8) =T . @

So how should we choose T'? In practice (Abadi et al.,
2016), a rule of thumb is to set 7" equal to the median of the
observed points. Is this choice optimal? This is an instance
of the basic question we aim to understand in this paper.

First, recall from Definition 4 that the noise added to gr
follows a Laplace distribution with scale parameter Ay, /€.
We can decompose the expected error of the estimate §
produced by Lap,,. (S) into a variance term (due to the
noise) and a bias term (due to the contribution limit):

Elg - 9(5)l 3)
<Elg = gr(S)] + l97(S) — 9(S)
= Agp /e +97(S) — 9(S)] S
=T/e+ Z max(0,z; — T) (5)
pr

where we use the fact that the mean absolute deviation of a
Laplace variable is equal to its scale parameter. Note that, if
T is very small, the variance is almost zero but the bias is
approximately ¢g(S), rendering the estimate useless. On the
other hand, as T gets large, the bias drops to zero but the
noise increases without bound. We can find the optimal T’
by noting that the bound is convex with sub-derivative

1
E_|{i:xi>T}|a (6)

thus the minimum is achieved when T is equal to the [1/¢€]|th
largest value in S. Note that the analysis is nearly tight, and
it is easy to show that

Elj—9(S) > 5 (T/e+zmax<o,x,- - T)) .

i=1

This is in some ways a counter-intuitive result. It says that
the limit we should impose on user contributions is just the
(1 — 1/ne)-quantile of the contributions themselves. It does
not matter how large or small the contributions are above
or below the cutoff, only that a fixed number of values
are clipped. We do not need detailed knowledge of the
distribution of user values; a simple statistic suffices.

— Optimal — 95-quantile
Median
101 = 1 ] ] ] r
5 : :
5 100
g i :
£ 107 5 r
& :
=R r
o0 H
< z z
10° - ! ! ! -
-5 -4 -3 -2

log 1 (e)

Figure 1. Error when privately estimating the number of ratings
in the MovieLens dataset using different truncation strategies,
averaged over 1000 runs. Fixed quantiles achieve the optimal
trade-off for a single €, but remain strongly suboptimal for other
values of e.

This last point is especially important given that any infor-
mation about the dataset used to determine 7" must itself be
computed privately. (That is, choosing 7" based on exact
statistics of the dataset might indirectly reveal user informa-
tion.) Luckily, there are a variety of differentially private
algorithms that can be applied to approximating quantiles
(Nissim et al., 2007; Dwork & Lei, 2009; Smith, 2011).
Moreover, a quantile is an intuitive property of the dataset
about which a practitioner might have strong prior knowl-
edge, enabling the selection of a good 1" without reference
to the dataset at all. We will see in Section 6 that a similarly
intuitive statistic also appears in the more general setting.

Example. The MovieLens 20M dataset® consists of 20
million movie ratings from 138 thousand users. Consider
the problem of releasing the total number of ratings in a
differentially private way. That is, if z; is the number of
movies rated by user 7, we are interested in releasing g =

E:iaq.

We compare three methods of contribution bounding, fol-
lowed by the Laplace mechanism: (1) truncation of {x;}
to the (1 — 1/ne)-quantile, as suggested by our analysis,
(2) the commonly used truncation at the median, and (3)
truncation at the 95% quantile. Figure 1 shows the relative
error in the sum as a function of the privacy parameter €. It
is easy to observe from this simple experiment that no fixed
quantile is universally good for capping contributions when
estimating a sum; for a given e it will either over-truncate
contributions, leading to bias (the flat part of the error curve),
or the sensitivity will be too high, leading to high levels of
noise (the linear part of the error curve). By optimizing the
threshold we balance this trade-off and essentially always
outperform capping at a fixed quantile.

thtps://grouplens.org/datasets/movielens/
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4. Contribution Bounding for Learning

In the remainder of this work, we analyze a similar bias-
variance tension that arises during differentially private
learning. Suppose now that S is a collection of exam-
ples z1, 2o, . .., z, contributed by a population of users. A
single user may have provided all n examples, or each z;
could have been provided by a unique user. Assuming
z; = (zi,y;) € X x Y, we wish to deploy some learning al-
gorithm that outputs a good hypothesis h € H with respect
to a loss function L : H x Z — [0, 1].

In particular, we would like to do empirical risk minimiza-
tion (ERM). Given an arbitrary set of example vectors S,
we can define the empirical risk of an arbitrary hypothesis
has Ls(h) = 57 2 .es L(h, 2). A differentially private
ERM algorithm selects hp,i, € H in a manner that satisfies
Definition 2 while keeping Ls(hpriv) close to the actual
minimal empirical risk £% = infre g Ls(h).

A variety of algorithms have been proposed for differentially
private ERM, including input perturbation, output perturba-
tion, and the exponential mechanism with utility measured
by Ls(h) (Chaudhuri et al., 2011; Bassily et al., 2014). The
specific utility guarantees depend on the method, as well
as assumptions on L. For simplicity, most previous work
assumes that users are guaranteed to contribute at most one
example to the dataset. However, these algorithms are easily
adapted to settings where users contribute multiple exam-
ples. Generically, the utility will depend on the fraction of
the dataset contributed by a single user; here, we use the
following definition.

Definition 5 (F-utility). Fix a dataset S of size n and a
loss function Lg, and let T be the maximum number of ex-
amples in' S contributed by any single user. We say that an
e-differentially private ERM algorithm gives an F'-utility
guarantee if, with probability at least 1 — 0, for every hy-
pothesis h,

Ls(hpriv) < Ls(h) + F(1/n,1/e,1/6) ,

where the probability is taken over the randomness in the
differentially private ERM algorithm, and F' : R x R x
R — R captures the growth of the error with respect to the
different parameters.

Typically, F' will be polynomial in 7/n,1/e and polylog-
arithmic in 1/§. For example, when 7 = 1, Lemma 3
in (Chaudhuri et al., 2011), concludes that output perturba-
tion on a sufficiently smooth and regularized loss function
satisfies the F'-utility guarantee with F'(1/n,1/€,1/9) =
Cr lnigleé‘” , for a constant C'r specific to their setting (de-
pending on, e.g., dimensionality constants, and the smooth-
ness and regularization parameters of L). It is an easy
modification of their Corollary 1 to show that if users
can contribute up to 7 examples, then F'(7/n,1/e,1/5) =

T2F(1/n,1/€,1/6).

In datasets where the participation of a single user is un-
bounded, the only a priori bound on 7 is n, and the F'-
utility guarantee given above is vacuous in the sense that
it is greater than 1 and does not decay with n. A standard
approach used in practice is therefore to first bound the con-
tribution of any single user to the dataset by setting a hard
contribution threshold of 7. If a user contributes more than
T examples to the original dataset S, we only take the first 7
to produce a modified dataset S. This bounds the sensitiv-
ity of the learning algorithm to the presence or absence of
any particular user. As in our sum example from Section 3,
a small 7 introduces bias; the contribution-bounded dataset
S; no longer resembles S. On the other hand, a large 7
increases the sensitivity of the algorithm to a single user,
requiring more noise and eventually making the F'-utility
bound vacuous. What exactly is the trade-off between bias
and variance as a function of 7?7 We provide an answer to
this question in the following section.

S. Setting and Main Results

Before stating the main results of our work, we introduce
some additional structure to the problem. Let N index a
(possibly infinite) set of users. Each example z; in S is
generated by first selecting a user from N, then generating
an example from a distribution specific to that user. We
assume that both stages of this process are i.i.d., so that there
is a well-defined distribution D generating the examples in
S. Thatis, z; is generated by first drawing a user .J; from the
participation distribution P, and then drawing z; according
to the user-data distribution D”:. We can then define the
risk £L(h) = E.p[L(h, z)] of a hypothesis in H. We also
parametrize P by p; = P;.p[J = j].

As introduced in Section 4, we are interested in selecting 7
so that running private ERM on S, produces a good hypoth-
esis. It is reasonable to have to this threshold grow as the
size of the dataset grows (more on this in Section 7), and
so we will let 7 = 1yn for some 7y € [0, 1]. (Although 7 is
a function of n, we will drop this for clarity of notation in
what follows). 7 represents the maximum fraction of the
original dataset that a single user can contribute to S,. We
are therefore interested in the following procedure.

Algorithm 1 Contribution-bounded ERM.

Input: Dataset S = (z1,. .., 2, ) drawn from D, contri-
bution fraction 79 > 0, privacy parameter € > 0.
Construct S; where 7 = 1gn.

Run e-differentially private ERM on S; to obtain hpyiy.
return /.

Notice that the privacy of A,y holds regardless of the pro-
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cess that generated S. However, in this setting we will be
able to characterize the bias-variance trade-off induced by
the choice of 7. In particular, the trade-off will depend on
properties of the participation distribution, P.

Let n; denote the number of times user j was observed in
the data. That is, n; = >, 1;,—;. Define also n;, =
min(ny;, 7) andn, = >, n;;. The quantity n, corresponds
to the effective sample size of the data. Finally, let £;(h) =
E(g,y)~pi [L(h,y)] indicate the risk with respect to the j-th
user’s data distribution. We can now state our main theorem.

Theorem 1. Suppose Algorithm 1 is run with an e-
differentially private ERM algorithm admitting an F -utility
bound. Suppose L is 1-Lipschitz, |L| < 1, d =
VCDim(H). For every n, 7 > 0 and 6 > 0 with prob-
ability at least 1 — §:

: i Mg M po
L(hpriv) < jinf L(h) + 2 sup Z ( ) L;(h)

heH Uzs n

bias

dlog % T
1o mt —I—F(n—T,l/e,?)/é).
—_—
—_— ———

privacy noise variance
finite sample variance

We can already make some high-level qualitative observa-
tions. As 7 — n we expect a number of things to happen.
First, the size of the dataset S; should approach n, and so
the finite sample variance should approach O(1/1/n) as we
retain all the data. Second, the process that generated S,
should start to resemble the i.i.d. process that generated S,
and the bias introduced by using S in lieu of S should dis-
appear. Indeed, as 7 — n, we have n;, — n; and n, — n.
On the other hand, increasing the threshold comes at a cost.
Indeed, notice that as 7 — n then the term i tends to
1 making the bound on the privacy noise vacuous. This
reflects the fact that the privacy mechanism has no a priori
bound on how much a single user could have contributed to
S.

On the other hand, as 7 — 1 we truncate the contribution
of every user to a handful of examples. If on top of that
the number of users we observe in the sample is in O(n)
then ;= will be in O(1/n) and we recover the original
bound on the privacy noise needed when every users is
known to contribute a single example. On the other hand,
by truncating more data we are likely to increase the bias
term.

This suggests that there is an optimal choice of 7 that will
perfectly trade-off the bias introduced by truncation and the
error introduced by making the output private. In order to
find this value, we must first better understand the bias term.
The bias term corresponds to the difference in expectation

of a loss under two different empirical probabilities. As
such, we could in principle leverage the literature in domain
adaptation to bound this term (Blitzer et al., 2007; Cortes
et al., 2015). However, these general purpose techniques
are not illuminating with respect to the dependence on 7.
Instead, we perform additional analysis to quantify the bias,
both in terms of an easily computed data-dependent quantity
and as a simple function of 7.

6. Understanding the Bias Term

We now show how to bound the bias term in Theorem 1.
We provide both a data dependent bound as well as a high
probability bound with a very simple dependence on 7.
These bounds illustrate the types of distributions that are
more amenable to truncation, and provide us with a way to
analytically determine the optimal truncation parameter 7y
for certain families of distributions.

To motivate the definitions throughout this section, we first
identify some desirable properties of the underlying distri-
bution that would make the term

n
n
=1 7

small. Notice that if n;, = n; for all j, i.e., if we keep all
of the examples, then the term vanishes for all h. Thus any
bound on the bias should decrease to 0 as 79 — 1. On the
other hand, suppose all of the users are statistically the same,
that is, £;(h) is constant with respect to j; then reducing
the contribution from any user does not incur bias, and the
term should also vanish for any 7. This intuition suggests
the following definition.

%)@(h)‘

Definition 6. The empirical variance of a hypothesis class
His
Var(H) = sup Var(h) ,
heH

where for any h € H, Var(h) = 3", "3(L;(h) — L(h))>.
The empirical variance quantifies how close £;(h) is to
being constant across users. We can now state the main
result of this section. The proof of this statement can be
found in the appendix.

Proposition 1. If ||L||s < 1 and T = Ton for 1o € (0, 1],
then the bias term in Theorem 1 can be bounded as follows:

< min <\/; log (1%)’ \/i:Var(H))
gmin(,lélog(%),uwa%o(m) .
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Proposition 1 reduces the complexity of the bias term to un-
derstanding a single ratio: ==, the proportion of the original
sample that is kept after capping individual user contribu-
tions. This simple statistic can be calculated from data, and
can in principle guide the choice of 7.

The second bound in the proposition is a crude estimate of
this ratio (see the appendix), but is sufficient to capture the
intuition we described at the beginning of the section: as
7o — 0 the bias term goes to zero as /log(1/7p). On the
other hand, if D; does not vary across users, then Var(H)
is zero and the bias term vanishes regardless of 75. We can
now provide explicit guarantees on the generalization ability
of private ERM.

To get a better understanding of the privacy noise term, recall
from the discussion following Definition 5 that (Chaudhuri
et al., 2011) showed how to instantiate F'(7/n,1/¢,1/9) to

O(52 log?(1/6)).

Substituting these into Theorem 1 we get:

Corollary 1. Under the assumptions of Theorem 1, the
setting of Chaudhuri et al. (2011), and that n, /n > 0.25,
for any O, with probability at least 1 — §:

L(hpriv) < inf L(h) + 2/ —n./n)
€ N
bias

Lo dlog ¥

7'2 2

privacy noise variance

nr

finite sample variance

The proof follows by substitution of Proposition 1, observ-

ing that for x < 3/4, In ﬁ < 2z, and taking x = 1 — 2=,

n

The key to understanding the bound is untangling the re-
lationship between 7,n., and n. It can be shown (see
Proposition 5 in the appendix) that if 7 = 7mgn then
== @( > jipy<7o pj). Therefore if there is a small choice
of 7 such that the majority of the participation probabil-
ity mass is on users who are not capped (p; < 79), then
n./n ~ 1 making the bias term small, since 7 is also small
we achieve a good bias-variance trade-off. In other words,
Corollary 1 tells us that private learning is easier when the
contribution is spread amongst multiple users and becomes
significantly harder if the contribution is concentrated on
a small number of users. While this might be intuitively
clear, the previous corollary quantifies this effect. In Fig-
ure 2 we plot 79 — > jipy<ro P for probabilities of the
form p; o 31% for different values of .

7. Cost of Privacy

In this section, we draw attention to an interesting conse-
quence of Theorem 1 and Corollary 1. For a finite n, 79

— a=0.20

— a=0.50

— a=0.02
a=0.10

To

Figure 2. Sum of probability mass of uncapped users.

and thus 7 can be selected to optimize the bound, trading
off bias and variance. However, unlike traditional learning
bounds, there is no choice of threshold that causes both the
bias and variance terms to vanish as n — oo.

We first discuss this phenomenon and then give an explana-
tion as to why this is not just an artifact of our bound but
is indeed fundamental to contribution bounding for differ-
entially private learning, a phenomenon we call the cost of
privacy.

Any non-trivial F-utility guarantee for a differentially pri-
vate learning algorithm will be increasing in its first argu-
ment. Thus to reduce the privacy variance term to 0 it is
critical to make sure the threshold, 7 grows sublinearly with
n. Otherwise, in case of a constant 7y the bound contains
a term that does not vanish with the introduction of more
data. This, however, makes the bias term increase, as n/n.
grows as 7q shrinks.

The cost of privacy appears not to be an artifact of our bound.
In particular, differentially private learning algorithms re-
quire both that the dataset is growing and that an individual’s
contribution to the dataset is bounded by some constant 7
in order for the privacy variance to be vanishing. If we keep
a constant 7, then as n grows, the number of users whose
contribution is capped increases, until S, appears to have
been drawn from a distribution that is uniform over these
users <. In all but the luckiest of circumstances this biases
the data in S, away from the data-generation process.

We leave it as an open question whether any mechanism
can make the cost of privacy vanish as n — oo, but we sus-
pect it is unavoidable in general, simply because individual
users contribute constant fractions of the dataset. We can
either add constant noise to protect these users, or suppress
their contributions to a level that leaves the dataset strongly
biased.

To give another sense of this cost, we show in Figure 3 the
sum of the bias and privacy noise for e = 1.0, different
values of 7y and different participation distributions P. We

consider Pareto distributions where p; ﬁ To generate
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Figure 3. (a) Cost of privacy as a function of 79. The minimum
error that we can add to a private ERM estimator is given by the
minimum of each curve. (b) Number of users whose contribution
is capped as a function of 79

these curves we use the empirical bound in Proposition 1,
simulating samples from the Pareto distributions and aver-
aging the ratio % over 100 runs. Figure 3 (a) shows the
cost of privacy for various choices of 7¢; note that the mini-
mum of each curve is significantly above zero. Figure 3 (b)
shows the number of users whose contribution is expected
to be limited as a function of 7. Notice that for the optimal
parameter 7, the number of users whose contribution are
capped is very small (2 to 8 users). This result mirrors that
from Section 3, where we capped the contribution of only
the top 1/e users.

8. Proofs

We now prove Theorem 1. Throughout this section we as-
sume that L is 1-Lipchitz. Recall that .J; is the random iden-
tity of the user selected for example 7 in S. The first lemma
states that the empirical risk converges to a reweighted ver-
sion of the true risk, conditioned on the outcomes of {.J;}.
The proof follows from standard arguments in learning the-
ory and can be found in the Appendix.

Lemma 1. Conditioned on the outcomes of {J;}, with prob-
ability at least 1 — 6 the following holds uniformly over
he H:

)~ X2 ey <[085 sl

; n; ToN 27on

Next, we use Lemma 1 to bound the difference between the
empirical risk on our thresholded data set S, and the true
risk.

Lemma 2. Fix § > 0 and let d = VCdim(H ). Then with
probability at least 1 — 0, the following inequality holds

uniformly for h in H.

TN

Ls. (h) — L(R)] < \/leog T \/log(2/5)

The proof of this lemma can also be found in the appendix.

Theorem 1. Suppose Algorithm 1 is run with an e-
differentially private ERM algorithm admitting an F-utility
bound. Let d = VCDim(H), and fix n, 7o > 0 and 6 > 0.
Then with probability at least 1 — 0:

Nrj n;
. < i Ty 79 .
L(hpriv) < jnf £(h) + sup 2| ( ) L;(h)

heH zs n

bias

|dlog 5 T
—_————
—_———

privacy noise variance
finite sample variance

Proof. Let hpy,iy be the hypothesis returned by our algo-
rithm and A* the hypothesis optimizing £. Notice that hpiy
is obtained by running Algorithm 1 on a data set of size n..
Thus by definition of F'-utility we have

) )'

T
‘CST (hpriv) S EST (h*) + F(;7

T

1
€

[STINCM]

Next we can use Lemma 2 to bound Lg_(h*) in terms of
L(h*). Similarly we can lower bound Lg_ (hp,iv) in terms
of L(hpriv). Combining both bounds and using the union
bound yields the proof. O

9. Conclusion

We have provided a detailed analysis of the bias-variance
trade-off which arises as a result of contribution bounding
datasets during differentially private learning, specifically
in settings where users are allowed to contribute more than
one example to the dataset. Our bounds give the practitioner
a way to carefully tune contribution-bounding as a function
of statistical properties of the data. Moreover, we show
that there is a fundamental cost to privacy which does not
vanish even with large datasets. We leave as interesting open
questions how to estimate the aforementioned statistical
properties privately. We also leave open the search for other
pre-processing techniques that avoid the cost of privacy
imposed by naive contribution-bounding.
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A. Concentration bounds

In this section we include a series of well known concentra-
tion bounds used in the statistical learning literature. In order
to prove this bounds we will use the notion of Rademacher
complexity.

Definition 7. Given a sample z1,. .., z, € Z and a class
of functions G mapping Z to [0, 1], we define the empirical
Rademacher complexity of G as

Ig[sung % az},

gEGZ 1

R (G) =

where o; are i.i.d. uniform random varialbes over the set

{-1,1}.

The Rademacher complexity of a class is closely related to
its VC dimension. The following Lemma can be found in
(Mohri et al., 2012).

Lemma 3. Let G be a function class with VC dimension
VCdim(h) = d then

R(G) < y/2mdlog %

Lemma 4. Let L be K-Lipchitz and let 5 > 0. Conditioned
on the choice of users belonging to the sample the following
bound holds with probability at least 1 — § for forall h € H

Nrj

‘E E L(h(xiz), yij) — E nTj‘Cj(h/)‘
i o=l j
Ny log%

Proof. Relabeling the samples we notice that the left hand
side of the above inequality is given by

’ZL (), ys) ZL (@), v4)]

Let H;, = {(z,y) — L(h(z),y)|h € H}, using the fact
that (z;,y;) are independent conditioned on the choice of
users and a standard learning theory bound (Mohri et al.,
2012) we have with probability at least 1 — §

ZL ol

n, log %
2

nr

‘ZL xz yz

< mn, (HL) +

Finally by Talagrand’s contraction lemma (Mobhri et al.,
2012) we know that R, (Hr) < KR, (H) which con-
cludes the proof. O

Lemma 1. Conditioned on the outcomes of {J;}, with prob-
ability at least 1 — § the following holds uniformly over
heH:

Nyj 2dlog & log(1/6)
h)—Y —LLi(h)| < d
£s.(h) ;HT@UM = w —

Proof. The proof follows directly from the previous propo-
sition and a standard bound on the Rademacher complexity
by the VC dimension (Mobhri et al., 2012). L]

Lemma 2. Fix ¢ > 0 and let d = VCdim(H). Then with
probability at least 1 — 0, the following inequality holds
uniformly for h in H.

2dlog < ]
Ls.(h) — L(h)] < \/ A \/ 08(2/9)
ToN 2Ton

4
Nrj 1Ny log 5
+Z<m‘n>‘j(h>+ on

J

Proof. We begin by decomposing the loss into three parts.

ILs. () — L) < |Ls.(h) =S ;)| @)

nr

+> (7;] - ’fj) .| ®

1 (Eem)Lm) . ©

Eq. (7) is the generalization error of our empirical loss, con-
ditioned on the outcomes of {.J;}. We bound it by applying
Lemma 1 with g.

Eq. (8) is the error attributable to differences between the
original dataset S and the thresholded data set S ; it appears
directly in the bound.

Finally, Eq. (9) is the finite sample error due to the random-
ness in {.J; }. Observe that

(% - n) | = 13

J =1

)= 2 ik

which is just the difference between the sample mean of
n i.i.d. random variables bounded in [0, 1] and their true

mean. Hoeffding’s 1nequahty thus bounds (9) by log —

with probability 1 — 5.

Combining these results under a union bound completes the
proof. O
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B. Bias bounds

Proposition 2. Let r; for j € N be such that r; > 0 and
Yiyry =1 Let0 < gq; <1, Q=73,q; Finallylet
¢ = %’ If|L(h, z)| < 1, then the following bound holds
for all hypotheses h.
1lo <l>
2%\

IZ (q} *Tj)ﬁj(h)‘ <
J
Proof. Using the fact that £;(h) < 1 we have
PCEIADIESY
J J

Let r and g’ denote the distributions induced by 7; and ¢
respectively. By Pinsker’s inequality we know

> |g - <
j=1

q;- -7, (10)

1
SKL( )

where KL(r||q’) denotes the Kullback-Leibler divergence
between the two distributions. We can bound this divergence
as follows:

KL(r||q")

T us( ) < § e (4)

s (}).

where we have used the fact that ¢; < r; for the first in-
equality. Substituting this bound back in (10) yields the
statement of the proposition. [

We now define a more general version of the variance term
introduced in Section 6.

Definition 8. Given a distribution r over N and a hypoth-
esis h € H we define the variance of h with respect to r

as
ZT] ﬁh) .

Proposition 3. Under the notation and assumptions of
Proposition 2, the following bound holds for every h:

| > (g) =) <

Var(h,r)

2Var(h,r)

Proof. The proof relies on the simple fact that:

ZZ(Ej(h)— )rid; = ZE q}—zﬁi(h)f

This is easy to verify using the fact that > r; = 1 and
S q; = 1. We can now apply the Cauchy-Schwarz inequal-
ity as follows:

‘Z(% - rj)ﬁj(h)‘
- ‘ ZZ(EJ(h) — Li(h))gjri
- ‘ ZZ (h))\/Tir; —= \F

s\/ZZw](h)— )?rir,) ZZ(Z)
_ \/ZZ(@(h)—ﬁl(h))%m 2

A simple calculation shows that the first term in the above
expression is in fact equal to 2Var(h, r). Therefore we need
only to prove that the second term is bounded by é We
have

>

J

qy
O
1
<FYu-g
s 2 ¥ )
@e=Tq
where we used the fact that g; < r;. O

The proof of Proposition 1 is easily derived from Proposi-
tions 2 and 3. Indeed, letting r; = % and ¢; = "~ we
have ¢; < r;, and thus the result follows.

C. Additional bounds

Proposition 4. Let 7 < n be the cap on user contributions.
Then n, > T.

Proof. There are only two possibilities: either n; < 7 for
all j or n; > 7 for some j. In the latter case n, > n; = 7
by definition. On the other hand, if n; < 7 for all j then

nT:E an:E n;=mnz>r.
J J

O

Proposition 5. Let 1 > 19 > 0 and 7 = 7gn. Let K(19) =
H{j | pj > 7o}| and let 6 > 0. With probability at least
1-9,
nr o oK (10)  [log(1/6)
n 4 2n
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Proof. Recall that J; is the random variable that denotes
the user corresponding to example . We know that
nj = Yo, 1;-; and n, = Y !  min(n;,7). Let
#¢(J1,...,Jn) = “=. We want to bound the change in
¢ as we perturb a single coordinate:

|¢(J177Jn) - QS(J{? 7Jn)‘

If we change only one point in the sample then, clearly,
we change the contribution of at most two users ¢; and
is. Let nj, and nj  denote the user contributions under the
perturbation. Then the above expression is equal to

/

i T)+min(n;,, 7) —min(n;2 7))

(1)

Let us assume w.l.o.g. that n;, > n} ; this implies that
1

ni, < nj;,. Therefore 0 < min(n;,,7) — min(n; ,7) <1
and 0 > min(n;,,7) — min(nj,,7) > —1. This readily
implies that (11) is bounded by % We can now apply Mc-
Diarmid’s inequality and see that for any 7 > 0

- | min(n;,,7)—min(n

nr 1 —onn2
Dr o2 —p) <e 2,
P( < —En] n) <e (12)

n
Now let Q(79) = >_7_, min(p;, 7). It is easy to see that
Q(70) = Z T0 + Z pj > K(70).
Jpi>To J:pj <To

Therefore from Corollary 2 we know that

Pl < BKm) ) <ot <20
< P(" < Eln] - 1)

The result follows from (12) by setting § = e=2m” and
solving for 7. O

Lemma 2. Let S,, = vazl X; be a sum of i.i.d. Bernoulli
random variables with P(X; = 1) = p. Then

E[min(S,, )] > imin(pn,T) (13)

Proof. First let us assume that 7 < np in that case we have:
E[min(S,,7)] = E[Sy1s, <+] + 7P(S, > 7)
>71P(S, > 1)

> 7P(S, > np) > 2,

where we used the fact that P(S,, > np) > 1 (Greenberg
& Mohri, 2013; Vapnik, 1998).

On the other hand if 7 > np then

0
S 1
-n,
= P
Combining the two cases yields the statement of the propo-
sition. O
Corollary 2. Let Ji, k = 1,...,n be a random variable

in N such that P(J, = j) = pj. Letnj = > 1;,-;,
79 > 0 and 7 = Ton. Finally, let n; = 3, min(n;,7);
then we have

1 1 .
n Eln,] > 1 Z mln(pj, 0)
J
Proof. By Fubini’s theorem,
E[n,] = E[Z min(nj, 7)) = ZE[min(nJ,T)] )
J J

On the other hand, n; is a sum of independent Bernoulli
random variables with probability p;. So from the previous
proposition we have

1 1
- ZJ:E[min(nj, )] > o ;min(pjn, 7)

1 .
=1 Z min(p;, 1)
J
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