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Abstract
We consider a budgeted variant of the problem of learn-
ing from expert advice with N experts. Each queried ex-
pert incurs a cost and there is a given budget B on the
total cost of experts that can be queried in any prediction
round. We provide an online learning algorithm for this
setting with regret after T prediction rounds bounded by

O

(√
C
B

log(N)T

)
, where C is the total cost of all experts.

We complement this upper bound with a nearly matching

lower bound Ω

(√
C
B
T

)
on the regret of any algorithm for

this problem. We also provide experimental validation of our
algorithm.

1 Introduction
In many real world domains, systems must make real-time
predictions, but have natural contraints on the resources
that can be devoted to making such a prediction. For ex-
ample, an autonomous vehicle may need to predict the
future location of objects in its environment in order to
avoid collision. Since slight changes in lighting or reflec-
tion can drastically change the optimal choice of model for
object-tracking (see (Grabner, Grabner, and Bischof 2006;
Wu, Lim, and Yang 2013)), this model selection must hap-
pen while the system is online. At the same time the real-
time characteristics of such systems imply a natural con-
straint (i.e., a “budget”) on machines resources (processing
cycles, memory, bandwidth, etc.) that can be devoted to
making a prediction. In other real world applications such
as health care and financial trading, there may also be ex-
plicit financial costs that limit acquisition of data relevant to
making predictions.

One might hope to make predictions in the above scenar-
ios using an online learning algorithm, such as learning from
expert advice. However, in real systems “experts” are fre-
quently just learned models themselves. Budget constraints
can therefore preclude the possibility of using a traditional
experts algorithm with a large number of experts. In the full
information setting, running an experts algorithm might in-
volve evaluating each and every model, draining machine
resources.
Copyright c© 2015, Association for the Advancement of Artificial
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There are two trivial, but suboptimal solutions. One solu-
tion is to simply cull the total number of models. This de-
creases the performance that one might hope to ever achieve:
by removing experts, the performance of the best expert has
worsened. The other trivial solution is to use a large number
of models N , but to only request a prediction from a sin-
gle model on every round. Since only a single prediction is
observed, only the loss of a single expert/model can be com-
puted, and we are in the so-called bandit information setting.
While computationally efficient, this comes at a cost of

√
N

cumulative regret. Moreoever, such an approach may be too
conservative with respect to resource consumption: if the
system is able to accomodate more consumption, a bandit
approach leaves unused budget on the table.

Motivated by these settings, we study a bounded cost vari-
ant of the problem of learning from expert advice prob-
lem (Cesa-Bianchi et al. 1997). In this variant, there is a
specified cost for obtaining the advice of a given expert.
There is a budget on the total cost of experts that can be
queried in any prediction round. An online learning algo-
rithm queries a subset of experts (respecting the budget con-
straint) for advice on each round, uses this advice to make
its own prediction, and suffers the associated loss. The algo-
rithm also observes losses of the queried experts (and gets
no information on the loss of the unqueried experts). The
goal of the algorithm is to minimize regret, where regret is
defined, as is standard in online learning, to be the difference
between the total loss incurred by the algorithm and the loss
of the best expert in hindsight.

In the first part of this paper, we prove our main theoret-
ical results, stated below. We then demonstrate our algo-
rithm’s performance on real data in a setting emulating the
aforementioned motivation for this work.

Theorem 1 In the setting where we have access to N ex-
perts with total cost C and budget B ≤ C, there is an on-
line learning algorithm whose expected regret is bounded by

O
(√

C
B log(N)T

)
after T prediction rounds. Furthermore,

any algorithm for the problem must incur expected regret of

Ω
(√

C
BT
)

on some sequence of expert advices and losses.

The regret bound proved here interpolates between two ex-
treme cases. On the one hand, if B = C, then we get
the standard experts setting, and the regret bound reduces



to the well-known O(
√

log(N)T ) bound of Multiplicative
Weights (MW)/Hedge algorithm (Cesa-Bianchi et al. 1997).
On the other hand, if all the costs are the same, and the bud-
get is the cost of any single expert, then we get the standard
multiarmed bandits setting, and the regret bound reduces to
the well-known O(

√
N log(N)T ) bound of the EXP3 algo-

rithm of (Auer et al. 2002).

2 Related work
Several authors have considered sequential learning prob-
lems in which there are budget constraints different from
ours. In the setting of (Badanidiyuru, Kleinberg, and
Slivkins 2013; Tran-Thanh et al. 2012), the learner is re-
stricted to the bandit setting, but consumes a resource upon
selecting an action, for which the learner has a fixed budged
over all rounds. The goal is to balance exploration, exploita-
tion and the future use of the resource. (Zolghadr et al. 2013)
considers a setting in which observations are costly, but are
incorporated in the algorithm’s loss. Furthermore, learn-
ing from limited observations of attributes is an important
theme in offline methods (Cesa-Bianchi, Shalev-Shwartz,
and Shamir 2011; Ben-David and Dichterman 1993; Hazan
and Koren 2012).

A special case of the problem considered in this paper has
appeared in the work of (Seldin et al. 2014). This special
case is the setting where all experts have the same cost of
1. The regret they obtain for this special case matches our
regret bound specialized to the unit cost case. Their algo-
rithm is quite different from ours, however, and uniformly
selects experts to query, while we use a binning technique
which naturally works for non-uniform costs. Our approach
has the following benefits over the algorithm in (Seldin et
al. 2014): (a) it is unclear how to generalize their algorithm
to non-uniform costs1 (b) our approach easily generalizes
to the case when both the costs and the budget can change
with time (see Section 6) and (c) our approach readily yields
a weighted averaging scheme for the case of convex losses
(see Section 6) which yields significant performance bene-
fits in practice.

A similar binning strategy was used in the work of (Kale
2014) which considers the budgeted prediction problem in
the multiarmed bandit setting, with uniform costs. The tech-
niques in this paper allow generalization of the results of
(Kale 2014) to the non-uniform case, but we omit the details
for brevity.

Another related work is (Alon et al. 2013) which consid-
ers a setting where the learner has partial observability of
expert losses specified by an observability graph on the ex-
perts. For any expert, using their advice also yields infor-
mation about the advice of their neighboring experts in the
observability graph. The binning idea used in this paper can
be used to construct an observability graph consisting of dis-
joint cliques of experts that are in the same bin. Applying

1Simply generalizing their algorithm by creating as many
copies of each expert as their cost and then treating each copy as
having unit cost fails because the while sampling unit cost copies
of experts may respect the budget, actually using those experts may
end up having higher cost than the budget.

the algorithm of (Alon et al. 2013) then yields similar re-
gret bounds to the ones appearing in this paper. However,
we emphasize that the budgeted prediction problem doesn’t
come endowed with an observability graph structure, and
using the binning technique is crucial in obtaining the regret
bounds in this paper. Furthermore the lower bound on regret
in (Alon et al. 2013) doesn’t apply to the budgeted predic-
tion problem again because of the lack of an observability
graph structure.

3 Preliminaries
We are given a set H of N experts. In each round t, for
t = 1, 2, . . . , T , an adversary sets losses `t(h) ∈ [0, 1] for
the predictions of each expert h ∈ H. Expert h’s prediction
can be requested at cost ch per round. Let C :=

∑
h∈H ch.

There is a per-round budget B on the total cost of experts
queried in each round. In each round t, the learner queries
a subset of experts St of total cost at most B, chooses one
of the experts ht in St, makes that expert’s prediction, and
suffers the same loss as the chosen expert, viz. `t(ht). The
learner observes the losses of all the experts in St. The goal
is to minimize the expected regret with respect to the loss of
the best expert, where the regret is defined as:

RegretT :=

T∑
t=1

`t(ht)−min
h∈H

T∑
t=1

`t(h).

In case the learner makes its predictions randomly, we con-
sider the expected regret instead.

4 Algorithm
The algorithm works as follows. In the beginning, partition
the experts in to as few “bins” of total cost at most B as pos-
sible: it is well-known that 2C

B bins suffice (Vazirani 2001),
say using the simple greedy first-fit algorithm. Run the Mul-
tiplicative Weights (MW)/Hedge algorithm (Cesa-Bianchi et
al. 1997; Arora, Hazan, and Kale 2012) for learning from
expert advice. This algorithm keeps a weight for every ex-
pert which induces a probability distribution on the experts
via normalization. In each round, the algorithm picks an ex-
pert from the induced probability distribution, and queries
all experts in the bin of the selected expert. This ensures
that the total cost of experts queried in any round is at most
B. The algorithm then follows the advice of the chosen
expert, suffers the same loss as the chosen expert, and ob-
serves the losses of all experts in the chosen bin. It then
updates the weights of all experts using a standard multi-
plicative weights update rule with an unbiased estimator for
the loss of each expert in the exponent of the multiplicative
factor. These loss estimators are non-zero only for experts in
the chosen bin; thus they can be computed for all experts and
the algorithm is well-defined. The pseudo-code2 is given in
Algorithm 1.

2We use a fixed learning rate here for simplicity; the extension
to time dependent learning rates which do not need knowledge of
T is standard.



Algorithm 1 Budgeted Experts Algorithm (BEXP).
Require: Learning rate parameter η

1: Partition the experts in to as few “bins” as possible, each
with total cost at most B. Let the number of bins used
be R. Call the bins B1, B2, . . . , BR, and define R :=
{1, 2, . . . , R}.

2: Initialize distribution q1 to be the uniform distribution
over the N experts.

3: for t = 1, 2, . . . , T do
4: Sample an expert ht ∼ qt, let It ∈ R be the index of

the bin to which ht belongs, and set St to BIt .
5: Query the advice of all experts in St.
6: Make the same prediction as ht and incur loss `t(ht),

and observe the loss of experts h ∈ St.
7: Compute loss estimators for all experts h as follows:

ˆ̀
t(h) :=

{
`t(h)
rt(It)

if h ∈ St
0 otherwise,

(1)

where rt is the probability distribution over bin in-
dices R induced by qt, i.e. for i ∈ R, rt(i) =∑
h∈Bi qt(h).

8: Update the distribution:

qt+1(h) := qt(h) exp(−η ˆ̀
t)(h)/Zt,

where Zt is the constant required to make qt+1 a dis-
tribution, i.e.

∑
h qt+1(h) = 1.

9: end for

5 Analysis
We first prove a couple of utility lemmas. The first lemma
shows that the loss estimators we construct are unbiased for
all experts:

Lemma 1 For all rounds t and all experts h, we have
E[ˆ̀t(h)] = `t(h).

PROOF: For any expert h, letBi be the bin it belongs to. The
probability that Bi is picked in any round t is exactly rt(i).
Thus, Et[ˆ̀t(h)] = `t(h)

rt(i)
· rt(i) + 0 · (1− rt(i)) = `t(h).

Taking expectation over all the randomness up to time t− 1,
the proof is complete. 2

The next lemma gives a bound on the variance of the es-
timated losses:

Lemma 2 For all rounds t we have E[
∑
h qt(h)ˆ̀

t(h)2] ≤
R.

PROOF: Conditioning on the value of It, we can upper
bound

∑
h qt(h)ˆ̀

t(h)2 as follows:
∑
h qt(h)ˆ̀

t(h)2 =∑
h∈BIt

qt(h)
(
`t(h)
rt(It)

)2
≤ 1

rt(It)
, since

∑
h∈BIt

qt(h) =

rt(It) and `t(h)2 ≤ 1. Therefore, Et
[∑

h qt(h)ˆ̀
t(h)2

]
≤

Et
[

1
rt(It)

]
=
∑R
i=1 rt(i) ·

1
rt(i)

= R. Taking expecta-
tion over all the randomness up to time t − 1, the proof is
complete. 2

Finally, we give a regret bound for the algorithm:

Theorem 2 Set η =
√

2 log(N)
RT . Then the expected re-

gret of the algorithm is bounded by
√

2R log(N)T ≤
2
√

C
B log(N)T .

PROOF: Note that the algorithm is essentially running the
MW algorithm on the estimated losses of the experts. The
MW algorithm guarantees (see (Arora, Hazan, and Kale
2012)) that as long as ˆ̀

t(h) ≥ 0 for all t, h, we have for
any expert h?

T∑
t=1

∑
h

qt(h)ˆ̀
t(h) ≤

∑
t

ˆ̀
t(h

?) +
η

2

∑
t

∑
h

qt(h)ˆ̀
t(h)2

+
logN

η
. (2)

Now, by Lemma 1 we have

Et[
∑
h

qt(h)ˆ̀
t(h)] =

∑
h

qt(h)`t(h) = Et[`t(ht)],

and thus E[
∑
h qt(h)ˆ̀

t(h)] = E[`t(ht)]. Using this fact, and
Lemmas 1 and 2, we see for any h∗,∑

t

E[`t(ht)] ≤
∑
t

`t(h
?) +

η

2
RT +

log(N)

η
.

This gives us the stated regret bound using η =
√

2 log(N)
RT

and the fact that R ≤ 2C
B . 2

6 Extensions
Re-binning. The analysis of the algorithm given above al-
lows the following flexibility in the algorithm: the algorithm
is free to re-bin the experts in each round if it chooses. The
regret bound continues to hold as long as the number of bins
is bounded by 2C

B . In practice, this could be very useful
if over time it is learned (via side information) that certain
groupings of experts are more informative than others. Also,
in practice, randomly permuting the experts and then rebin-
ning them yields more stability to the algorithm by avoiding
potentially bad binnings. We use this observation in our ex-
periments.

Changing Costs. The algorithm can be extended in a
straightforward way to the setting where the costs of the ex-
perts and the budget can change with time. Specifically, at
time t, the algorithm is told the cost ch,t of querying the
advice of expert h, and the budget Bt on the total cost of
queried experts. Let Ct :=

∑
h∈H ch,t be the total cost of

querying all the experts in round t.
In this setting, consider the following variant of the algo-

rithm. In each round t, the experts are re-partitioned into as
few bins as possible of total cost at most Bt with the current
costs of the experts. The rest of the algorithm stays the same:
viz. an expert is chosen from the current probability distri-
bution over the experts, and the bin it belongs to is chosen
for querying for expert advice. The update to the distribution
and the loss estimators are the same as in Algorithm 1.

It is easy to check that the analysis given above extends to
this setting, yielding the following bound:



Theorem 3 In the setting where in each round t new costs
ch,t for the experts and budget Bt are specified, the exten-
sion of Algorithm 1 which re-partitions the experts in each
round into bins of total cost at most Bt has regret bounded

by O
(√∑T

t=1
Ct
Bt

log(N)

)
, where Ct =

∑
h∈H ch,t.

Convex Losses. In very common learning settings, the
loss of each expert is a convex function of its prediction (for
example, in regression settings, one may use the squared loss
or absolute loss to measure the error of an expert’s predic-
tion). One can obtain lower losses in practice by taking a
average of the chosen experts’ predictions weighted by their
current weight. This does not change the regret bound since
Jensen’s inequality implies that the loss of the averaged pre-
diction is only lower than the expected loss of a chosen ex-
pert.

More precisely, suppose in each round t, we are required
to make a prediction y ∈ R, and the loss of the predic-
tion y is ft(y) for some convex function ft : R → [0, 1].
Every expert h makes a prediction yt(h) ∈ R, and suf-
fers loss `t(h) = ft(yt(h)). Then consider a variant of
the BEXP algorithm, called BEXP-AVG, which makes the

prediction ȳt :=

∑
h∈BIt

qt(h)yt(h)∑
h∈BIt

qt(h)
. This has lower loss

than the expected loss of an expert drawn at random from

qt, by Jensen’s inequality: ft(ȳt) ≤
∑
h∈BIt

qt(h)ft(yt(h))∑
h∈BIt

qt(h)
.

Since the probability of choosing the bin BIt is exactly
rt(It) =

∑
h∈BIt

qt(h), we have

Et[ft(ȳt)] ≤
∑
i∈R

∑
h∈Bi qt(h)ft(yt(h))∑

h∈Bi qt(h)
·
∑
h∈Bi

qt(h)

=
∑
h∈H

qt(h)ft(yt(h)) = Et[`t(ht)].

Using this bound in the proof of Theorem 2, we conclude
that this algorithm has the same regret bound. In practice,
this variant should have better performance, and indeed in
our experiments BEXP-AVG had substantially better per-
formance than other algorithms. It is unclear how to de-
rive similar averaging versions3 of the previous algorithm of
(Seldin et al. 2014).

7 Lower Bound
In this section, we show a lower bound on the regret of any
algorithm for the problem which shows that our upper bound
is nearly tight.

3The natural averaged variant of the algorithm of
(Seldin et al. 2014) that makes the weighted prediction∑

h∈St
qt(h)yt(h)

qt(h)+(1−qt(h))
B−1
N−1

does not work. While this weighted

prediction is correct in expectation, it does not yield the same
regret bound since the prediction is not a convex combination of
the observed predictions. This is borne out by experiments as well
where it is observed that this averaged variant does not converge.

Theorem 4 Given the costs ch for the experts h ∈ H and a
budget B, for any online algorithm, there is a sequence of
expert predictions and losses so that the expected regret of

the algorithm is at least 1
4

√
C
BT , where C =

∑
h∈H ch.

PROOF: The lower bound is based on the standard informa-
tion theoretic arguments (see for e.g. (Auer et al. 2002)). Let
B(p) be the Bernoulli distribution with parameter p, i.e. 1 is
chosen with probability p and 0 with probability 1 − p. Let
KL(P ‖Q) denote the KL-divergence between distributions
P and Q.

We may assume that 2B ≤ C: in the case that 2B ≥
C, an Ω(

√
T ) lower bound on the regret follows directly

from the standard Ω(
√
T ) lower bound which holds even in

the full-information (i.e. all expert predictions are observed)
setting.

In the following, we assume the online algorithm is deter-
ministic (the extension to randomized algorithms is easy by
conditioning on the random seed of the algorithm). Fix the

parameter ε := 1
2

√
C
BT . The expert predictions and losses

are generated randomly as follows. We define N probabil-
ity distributions, Ph for all h ∈ H. Fix h? ∈ H, and we
define Ph? as follows: in each round t, the loss of expert
h? is distributed as B( 1

2 − ε), and the losses of all other ex-
perts h 6= h? are distributed as B( 1

2 ). All random draws are
independent of each other. The best expert under this distri-
bution is h? with expected loss 1

2 −ε in each round. Let Eh?
denote expectation under Ph? .

Consider another probability distribution P0 for the ex-
pert predictions and losses where in each round each expert’s
loss is distributed as B( 1

2 ). Let E0 denote the expectation of
random variables under P0.

Suppose the expert predictions and losses are generated
from Ph? . Then the algorithm suffers an expected regret of
ε whenever h? is not in the chosen set of experts, St (since
the expected loss of any chosen expert is 1

2 then). Define
the random variable Nh? =

∑T
t=1 I[h

? ∈ St]. Then to
get a lower bound on the expected regret we need to up-
per bound Eh? [Nh? ]. To do this, we use arguments based
on KL-divergence between the distributions Ph? and P0.
Specifically, for all t, let

Ht = 〈(S1, `1(S1)), (S2, `2(S2)), . . . , (St, `t(St))〉
denote the history up to time t, where `τ (Sτ ) =
〈`τ (h)〉h∈Sτ . For convenience, we define H0 = 〈〉, the
empty vector. Note that since the algorithm is assumed to be
deterministic, Nh? is a deterministic function of the history
HT . Thus to upper bound Eh? [Nh? ] we compute an up-
per bound on KL(P0(HT ) ‖ Ph?(HT )). Lemma 3 shows
that KL(P0(HT ) ‖ Ph?(HT )) ≤ ε2

2 E0[Nh? ]. Thus, by
Pinsker’s inequality, we get

dTV(P0(HT ),Ph?(HT )) ≤
√

1
2KL(P0(HT ) ‖ Ph?(HT ))

≤
√
ε2E0[Nh? ].

Since |Nh? | ≤ T , this implies that Eh? [Nh? ] ≤ E0[Nh? ] +
ε
2T
√

E0[Nh? ]. Consider the distribution over experts where



expert h is chosen with probability ch
C . Choosing h? from

this distribution, taking the expecation under this distribu-
tion of both sides of the above inequality, and applying
Jensen’s inequality to the concave square root function, we
get ∑

h?∈H

ch?

C
Eh? [Nh? ] ≤

∑
h?∈H

ch?

C
E0[Nh? ]

+
ε

2
T

√∑
h?∈H

ch?

C
E0[Nh? ]

≤ B

C
T +

ε

2
T 3/2

√
B

C
.

The second inequality above follows from the following
fact: ∑

h?∈H

ch?E0[Nh? ] =
∑
h?∈H

ch?E0[
∑
t

I[h? ∈ St]]

=
∑
t

E0[
∑
h?∈H

ch?I[h
? ∈ St]]

≤
∑
t

B = BT,

where the inequality follows because the cost of the experts
in St does not exceed B.

Since the expected regret when the distribution of expert
predictions and losses is Ph? is at least ε(T − Eh? [Nh? ]),
and B

C ≤
1
2 , we have∑

h?∈H

ch?

C
Eh? [Regret] ≥

∑
h?∈H

ch?

C
ε(T − Eh? [Nh? ])

≥ ε

2
T − ε2

2
T 3/2

√
B

C
=

1

4

√
B

C
T,

using the setting ε = 1
2

√
C
BT . Thus there exists some h?

such that Eh? [Regret] ≥ 1
4

√
B
C T . 2

The following lemma gives an upper bound on the KL-
divergence between P0(HT ) and Ph?(HT ). The proof is
omitted for brevity.

Lemma 3 KL(P0(HT ) ‖ Ph?(HT )) ≤ ε2

2 E0[Nh? ].

8 Experiments
The following experiments demonstrate the algorithm of
section 4 and how it might be used for model selection in a
resource-constrained system making online predictions. We
will use the year-prediction task associated with the Mil-
lion Song Dataset (MSD). Each example in the MSD cor-
responds to a song released between 1922 and 2011. We
use the same features as (Bertin-Mahieux et al. 2011) – 90
acoustical features representing the timbre of a song. The
goal is to predict the year in which a song was released.

As discussed in the introduction, we think of each expert
as being a model trained using a variety of software, as is
common in real systems. We generate a variety of experts by
taking a particular parameterizable learning algorithm and

generating multiple instances, each with a different combi-
nation of parameter settings. In this way, we can think of
finding the best expert as corresponding to online parameter
tuning.

8.1 Experimental setup
We used 3 families of models trained with different param-
eter settings, for a total of 29 different experts. The models
were all trained on a set of 46, 382 examples of the MSD.
All labels in the dataset were in the range 1929 to 2010. We
normalized the labels by subtracting 1900 and dividing by
100 so that they were in the range [0, 1.1].

In more detail, the models used are as follows:
1. k-Nearest Neighbor trained using MATLAB. We used k

values in {1, 5, 11, 16, 21, 26, 51}, and either uniform av-
eraging or inverse distance weighted averaging to com-
pute the label, giving rise to fourteen models.

2. SVM models trained using libsvm4. We trained a total
of nine different models corresponding to using either ε-
SVR or ν-SVR, with a variety of kernels (linear, polyno-
mial, and sigmoid).

3. Linear regression models trained using Vowpal Wabbit5.
We trained six different models using either 1, 2, 5, or
10 passes over the training data, with additional variation
due to adding an optional L-BFGS step and scaling the
learning rate.
Cost for each model was measured in terms of running

time for each example. Within each model family, the cost
is roughly the same for different parameter settings. Thus,
after normalizing time, the costs for each SVM, k-Nearest
Neighbor and linear regression model were 147, 17 and 2
time units per example, respectively.

For testing, we applied the same normalization applied to
labels to the predictions of the experts. Furthermore, any
normalized predictions of experts outside the range [0, 1.1]
were clamped to this range. We used absolute loss to
measure the performance of the experts, i.e., if on exam-
ple (x, y), an expert predicted ŷ, the loss is |y − ŷ|. We
then tested the performance of the budgeted prediction algo-
rithms developed in this paper on a sequence of T = 5, 153
examples arriving online. On each round t, given an ex-
ample (xt, yt), the algorithm chooses a subset of experts to
query, obtains their predictions, makes its own prediction ŷt,
and suffers the absolute loss |yt − ŷt|.

We compared the performance of our algorithms to the
algorithm of (Seldin et al. 2014) which works in the uni-
form costs setting. Their algorithm (dubbed SBCA) op-
erates by sampling an expert from a distribution, using its
prediction. Additional experts are then sampled uniformly
at random. The distribution is updated using exponential
weighting of the appropriately constructed unbiased loss es-
timators. Since their algorithm only works in the uniform
costs case, to adapt to the non-uniform costs case consid-
ered in this paper, we set all expert costs to be some fixed
cost c, and set the number of experts to be queried in their

4http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5http://hunch.net/∼vw/
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Figure 1: Comparison of the average loss of different budgeted learning algorithms for different budget levels (expressed as
a fraction of the total cost of querying all experts). Top row: non-uniform costs for experts. Bottom row: uniform costs for
experts.

algorithm to be bBc c. Setting c equal to the maximum cost of
any expert ensures that the budget is never exceeded. We call
the resulting algorithm SBCA-MC. Another option is to set
c to be the average cost of all experts. However in this case it
is possible that the budget is exceeded in some round. In this
case, we simply stop sampling experts as soon as the budget
limit is reached. We call the resulting algorithm SBCA-AC.
While this algorithm generates biased estimates of the true
losses and is hence not guaranteed to converge, in experi-
ments it did seem to converge.

8.2 Experimental Results
In the first set of experiments, we tested the performance
of the algorithms with the same dataset with different bud-
get levels, using the costs of the experts as specified above.
These budget levels are expressed as a fraction of the total
cost of querying all experts; a fraction of 1 corresponds to
being able to query all experts. We plot the average abso-
lute loss in years, averaged over 10 runs of the algorithm,
for budget levels 0.1 and 0.25 in Figure 1. The top row of
the figure shows the results for the non-uniform cost setting.
We observed that BEXP-AVG is substantially better than the
other algorithms because it levarges the convexity of the loss
function. While BEXP is competitive with SBCA-AC, we
note that SBCA-AC doesn’t have a proof of convergence.
As expected, SBCA-MC has the worst performance. Simi-
lar performance was observed on other datasets as well.

In the second set of experiments, to obtain a more fair
comparison to SBCA, we also ran experiments with the
same dataset except that the costs of all experts were now set
to 1, so that we are in the uniform costs setting. In this case
as well, the results are similar: again BEXP-AVG is substan-
tially better than the others, and BEXP outperform SBCA at
low budget levels, and is competitive at higher budget levels.

9 Conclusion
In this work we considered the problem of learning from ex-
pert advice, where there is a budget constraint on the total
cost of experts that can be queried on a prediction round.
We give an algorithm, BEXP, which attains nearly optimal
rates, and interpolates between the standard experts and mul-
tiarmed bandits settings.

While a special case of this setting — wherein experts
have uniform costs — has been considered by (Seldin et al.
2014), it’s unclear how to adapt that algorithm to the gener-
alized cost setting. We argue the importance of the general-
ized cost setting. In particular, we demonstrate how BEXP
can be used for online model selection and parameter tuning.
Finally, we emphasize the flexibility of our algorithm, which
easily accommodates changing costs, re-binning of experts,
and averaging under convex losses. While rebinning and av-
eraging do not improve theoretical rates, they are extremely
useful in practice. This allows us to empirically outperform
(Seldin et al. 2014) even in the uniform cost setting.
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